IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v271y2024ics0925527324000653.html
   My bibliography  Save this article

Technician routing and scheduling with employees’ learning through implicit cross-training strategy

Author

Listed:
  • Chen, Xi
  • Li, Kaiwen
  • Lin, Sidian
  • Ding, Xiaosong

Abstract

With record high talent shortages and skill mismatches around the world, this paper investigates a variant of multi-period dynamic technician and routing problem that can be modeled as a Markov decision process. To deal with the double tradeoffs between the routing and service time costs, as well as the current and future costs, we propose an approximate dynamic programming (ADP)-based cost function approximation (CFA) algorithm — the implicit cross-training strategy (ICT). A two-phase routing and scheduling heuristic is developed to account for both employees’ learning and future information, and to facilitate an efficient implementation of CFA. Extensive computational results show that ICT can provide a better solution in the current decision with a global view in comparison with the myopic strategy. In depth analysis demonstrates that ICT trains the workforce with more balanced skillsets and workloads, which ensures the flexibility of the workforce and helps buffer against the future uncertainties with substantial routing cost savings. Additionally, ICT has much more advantages in large-scale problems with more diversified service requests and randomly distributed customers.

Suggested Citation

  • Chen, Xi & Li, Kaiwen & Lin, Sidian & Ding, Xiaosong, 2024. "Technician routing and scheduling with employees’ learning through implicit cross-training strategy," International Journal of Production Economics, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:proeco:v:271:y:2024:i:c:s0925527324000653
    DOI: 10.1016/j.ijpe.2024.109208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527324000653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2024.109208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hideki Hashimoto & Sylvain Boussier & Michel Vasquez & Christophe Wilbaut, 2011. "A GRASP-based approach for technicians and interventions scheduling for telecommunications," Annals of Operations Research, Springer, vol. 183(1), pages 143-161, March.
    2. Basso, Rafael & Kulcsár, Balázs & Sanchez-Diaz, Ivan & Qu, Xiaobo, 2022. "Dynamic stochastic electric vehicle routing with safe reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    3. Mosquera, Federico & Smet, Pieter & Vanden Berghe, Greet, 2019. "Flexible home care scheduling," Omega, Elsevier, vol. 83(C), pages 80-95.
    4. Christian Ruf & Jonathan F. Bard & Rainer Kolisch, 2022. "Workforce capacity planning with hierarchical skills, long-term training, and random resignations," International Journal of Production Research, Taylor & Francis Journals, vol. 60(2), pages 783-807, January.
    5. Meissner, Joern & Senicheva, Olga V., 2018. "Approximate dynamic programming for lateral transshipment problems in multi-location inventory systems," European Journal of Operational Research, Elsevier, vol. 265(1), pages 49-64.
    6. Marlin W. Ulmer & Barrett W. Thomas & Ann Melissa Campbell & Nicholas Woyak, 2021. "The Restaurant Meal Delivery Problem: Dynamic Pickup and Delivery with Deadlines and Random Ready Times," Transportation Science, INFORMS, vol. 55(1), pages 75-100, 1-2.
    7. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    8. Zamorano, Emilio & Stolletz, Raik, 2017. "Branch-and-price approaches for the Multiperiod Technician Routing and Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 55-68.
    9. Rasmussen, Matias Sevel & Justesen, Tor & Dohn, Anders & Larsen, Jesper, 2012. "The Home Care Crew Scheduling Problem: Preference-based visit clustering and temporal dependencies," European Journal of Operational Research, Elsevier, vol. 219(3), pages 598-610.
    10. Ulmer, Marlin & Nowak, Maciek & Mattfeld, Dirk & Kaminski, Bogumił, 2020. "Binary driver-customer familiarity in service routing," European Journal of Operational Research, Elsevier, vol. 286(2), pages 477-493.
    11. D A Nembhard & N Osothsilp, 2005. "Learning and forgetting-based worker selection for tasks of varying complexity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 576-587, May.
    12. Liu, Yang & Xie, Jiaohong & Chen, Nan, 2022. "Stochastic one-way carsharing systems with dynamic relocation incentives through preference learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    13. Selvaprabu Nadarajah & François Margot & Nicola Secomandi, 2015. "Relaxations of Approximate Linear Programs for the Real Option Management of Commodity Storage," Management Science, INFORMS, vol. 61(12), pages 3054-3076, December.
    14. Ghadimi, Saeed & Powell, Warren B., 2024. "Stochastic search for a parametric cost function approximation: Energy storage with rolling forecasts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 641-652.
    15. Chen, Xi & Thomas, Barrett W. & Hewitt, Mike, 2016. "The technician routing problem with experience-based service times," Omega, Elsevier, vol. 61(C), pages 49-61.
    16. Klapp, Mathias A. & Erera, Alan L. & Toriello, Alejandro, 2020. "Request acceptance in same-day delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    17. Fabien Tricoire & Nathalie Bostel & Pierre Dejax & Pierre Guez, 2013. "Exact and hybrid methods for the multiperiod field service routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 359-377, March.
    18. Belgacem Bouzaiene-Ayari & Clark Cheng & Sourav Das & Ricardo Fiorillo & Warren B. Powell, 2016. "From Single Commodity to Multiattribute Models for Locomotive Optimization: A Comparison of Optimal Integer Programming and Approximate Dynamic Programming," Transportation Science, INFORMS, vol. 50(2), pages 366-389, May.
    19. Guastaroba, G. & Côté, J.-F. & Coelho, L.C., 2021. "The Multi-Period Workforce Scheduling and Routing Problem," Omega, Elsevier, vol. 102(C).
    20. Hongsheng Zhong & Randolph W. Hall & Maged Dessouky, 2007. "Territory Planning and Vehicle Dispatching with Driver Learning," Transportation Science, INFORMS, vol. 41(1), pages 74-89, February.
    21. Ines Mathlouthi & Michel Gendreau & Jean-Yves Potvin, 2021. "Branch-and-Price for a Multi-attribute Technician Routing and Scheduling Problem," SN Operations Research Forum, Springer, vol. 2(1), pages 1-35, March.
    22. David Lesaint & Christos Voudouris & Nader Azarmi, 2000. "Dynamic Workforce Scheduling for British Telecommunications plc," Interfaces, INFORMS, vol. 30(1), pages 45-56, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Nowak, Maciek & Szufel, Przemysław, 2024. "Technician routing and scheduling for the sharing economy," European Journal of Operational Research, Elsevier, vol. 314(1), pages 15-31.
    3. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    4. Neda Tanoumand & Tonguç Ünlüyurt, 2021. "An exact algorithm for the resource constrained home health care vehicle routing problem," Annals of Operations Research, Springer, vol. 304(1), pages 397-425, September.
    5. Ehsan Pourjavad & Eman Almehdawe, 2022. "Optimization of the technician routing and scheduling problem for a telecommunication industry," Annals of Operations Research, Springer, vol. 315(1), pages 371-395, August.
    6. Chen, Xinwei & Wang, Tong & Thomas, Barrett W. & Ulmer, Marlin W., 2023. "Same-day delivery with fair customer service," European Journal of Operational Research, Elsevier, vol. 308(2), pages 738-751.
    7. Minghong Ma & Fei Yang, 2024. "Dynamic migratory beekeeping route recommendation based on spatio-temporal distribution of nectar sources," Annals of Operations Research, Springer, vol. 341(2), pages 1075-1105, October.
    8. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    9. Si, Guojin & Xia, Tangbin & Li, Yaping & Wang, Dong & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2023. "Resource allocation and maintenance scheduling for distributed multi-center renewable energy systems considering dynamic scope division," Renewable Energy, Elsevier, vol. 217(C).
    10. Vincent F. Yu & Yueh-Sheng Lin & Panca Jodiawan & Shih-Wei Lin & Yu-Chi Lai, 2023. "The Field Technician Scheduling Problem with Experience-Dependent Service Times," Mathematics, MDPI, vol. 11(21), pages 1-17, November.
    11. Chen, Xi & Hewitt, Mike & Thomas, Barrett W., 2018. "An approximate dynamic programming method for the multi-period technician scheduling problem with experience-based service times and stochastic customers," International Journal of Production Economics, Elsevier, vol. 196(C), pages 122-134.
    12. Fangzhou Yan & Huaxin Qiu & Dongya Han, 2023. "Lagrangian Heuristic for Multi-Depot Technician Planning of Product Distribution and Installation with a Lunch Break," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    13. Li, Yifu & Zhou, Chenhao & Yuan, Peixue & Ngo, Thi Tu Anh, 2023. "Experience-based territory planning and driver assignment with predicted demand and driver present condition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    14. Chen, Xi & Thomas, Barrett W. & Hewitt, Mike, 2016. "The technician routing problem with experience-based service times," Omega, Elsevier, vol. 61(C), pages 49-61.
    15. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    16. Bakker, Steffen J. & Wang, Akang & Gounaris, Chrysanthos E., 2021. "Vehicle routing with endogenous learning: Application to offshore plug and abandonment campaign planning," European Journal of Operational Research, Elsevier, vol. 289(1), pages 93-106.
    17. Scherr, Yannick Oskar & Gansterer, Margaretha & Hartl, Richard F., 2024. "Request acceptance with overbooking in dynamic and collaborative vehicle routing," European Journal of Operational Research, Elsevier, vol. 314(2), pages 612-629.
    18. de Aguiar, Ana Raquel Pena & Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel, 2023. "Home care routing and scheduling problem with teams’ synchronization," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    19. Auad, Ramon & Erera, Alan & Savelsbergh, Martin, 2023. "Courier satisfaction in rapid delivery systems using dynamic operating regions," Omega, Elsevier, vol. 121(C).
    20. Bosse, Alexander & Ulmer, Marlin W. & Manni, Emanuele & Mattfeld, Dirk C., 2023. "Dynamic priority rules for combining on-demand passenger transportation and transportation of goods," European Journal of Operational Research, Elsevier, vol. 309(1), pages 399-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:271:y:2024:i:c:s0925527324000653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.