IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v83y2019icp80-95.html
   My bibliography  Save this article

Flexible home care scheduling

Author

Listed:
  • Mosquera, Federico
  • Smet, Pieter
  • Vanden Berghe, Greet

Abstract

Home care services are in high demand given how they are steadily becoming the primary source of care for the elderly. Powerful decision support tools are indispensable for effectively managing available staff in the context of ever-increasing demand for care and limited caregiver availability. This paper advances home care literature by introducing flexible task durations, thereby enabling tasks to be completed faster and ultimately more care to be scheduled. This new concept, which originates from practice, introduces an additional decision to be made when creating a schedule, thereby greatly increasing the scheduling complexity. Consequently, this paper introduces a new optimization-based decision support model which allows for scheduling with flexible task duration, as well as other types of flexibility. A computational study quantifies the impact of: (i) scheduling with a finer task granularity thereby enabling accurate prioritization of high and low priority care, (ii) flexibility in task duration enabling tasks to be completed faster and more care to be scheduled, and (iii) increasing the number of different locations visited by a caregiver thereby enabling a trade-off between the number of serviced clients and caregiver workload. A new publicly available real-world data set is used, obtained directly from home care organizations operating in Flanders. Analysis of the computational results demonstrates that significant improvements in operational efficiency may be realized with minimal effort required by organizations. Furthermore, the proposed algorithm’s performance is confirmed by comparison against the bounds obtained by solving an integer programming formulation of the problem. Finally, a management policy scheme is proposed which, when gradually implemented in a home care organization, results in a more efficient and therefore cost-effective deployment of its workforce.

Suggested Citation

  • Mosquera, Federico & Smet, Pieter & Vanden Berghe, Greet, 2019. "Flexible home care scheduling," Omega, Elsevier, vol. 83(C), pages 80-95.
  • Handle: RePEc:eee:jomega:v:83:y:2019:i:c:p:80-95
    DOI: 10.1016/j.omega.2018.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048317305996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2018.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maya Duque, P.A. & Castro, M. & Sörensen, K. & Goos, P., 2015. "Home care service planning. The case of Landelijke Thuiszorg," European Journal of Operational Research, Elsevier, vol. 243(1), pages 292-301.
    2. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    3. Sachidanand V. Begur & David M. Miller & Jerry R. Weaver, 1997. "An Integrated Spatial DSS for Scheduling and Routing Home-Health-Care Nurses," Interfaces, INFORMS, vol. 27(4), pages 35-48, August.
    4. Martinez-Legaz, Juan Enrique, 1988. "Lexicographical order and duality in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 33(3), pages 342-348, February.
    5. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    6. Nickel, Stefan & Schröder, Michael & Steeg, Jörg, 2012. "Mid-term and short-term planning support for home health care services," European Journal of Operational Research, Elsevier, vol. 219(3), pages 574-587.
    7. J. Arturo Castillo-Salazar & Dario Landa-Silva & Rong Qu, 2016. "Workforce scheduling and routing problems: literature survey and computational study," Annals of Operations Research, Springer, vol. 239(1), pages 39-67, April.
    8. Dorota Mankowska & Frank Meisel & Christian Bierwirth, 2014. "The home health care routing and scheduling problem with interdependent services," Health Care Management Science, Springer, vol. 17(1), pages 15-30, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Aguiar, Ana Raquel Pena & Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel, 2023. "Home care routing and scheduling problem with teams’ synchronization," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    2. Moosavi, Amirhossein & Ozturk, Onur & Patrick, Jonathan, 2022. "Staff scheduling for residential care under pandemic conditions: The case of COVID-19," Omega, Elsevier, vol. 112(C).
    3. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    4. Chen, Xi & Li, Kaiwen & Lin, Sidian & Ding, Xiaosong, 2024. "Technician routing and scheduling with employees’ learning through implicit cross-training strategy," International Journal of Production Economics, Elsevier, vol. 271(C).
    5. Li, Yanfeng & Xiang, Ting & Szeto, Wai Yuen, 2021. "Home health care routing and scheduling problem with the consideration of outpatient services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Mahyar Mirabnejad & Hadi Mohammadi & Mehrdad Mirzabaghi & Amir Aghsami & Fariborz Jolai & Maziar Yazdani, 2022. "Home Health Care Problem with Synchronization Visits and Considering Samples Transferring Time: A Case Study in Tehran, Iran," IJERPH, MDPI, vol. 19(22), pages 1-25, November.
    7. Tohidi, Mohammad & Kazemi Zanjani, Masoumeh & Contreras, Ivan, 2021. "A physician planning framework for polyclinics under uncertainty," Omega, Elsevier, vol. 101(C).
    8. Lin, Meiyan & Ma, Lijun & Ying, Chengshuo, 2021. "Matching daily home health-care demands with supply in service-sharing platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    9. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2021. "Solutions for districting problems with chance-constrained balancing requirements," Omega, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    2. Biao Yuan & Zhibin Jiang, 2017. "Disruption Management for the Real-Time Home Caregiver Scheduling and Routing Problem," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    3. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    4. Gomes, Maria Isabel & Ramos, Tânia Rodrigues Pereira, 2019. "Modelling and (re-)planning periodic home social care services with loyalty and non-loyalty features," European Journal of Operational Research, Elsevier, vol. 277(1), pages 284-299.
    5. Semih Yalçındağ & Andrea Matta & Evren Şahin & J. George Shanthikumar, 2016. "The patient assignment problem in home health care: using a data-driven method to estimate the travel times of care givers," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 304-335, June.
    6. Shi, Yong & Boudouh, Toufik & Grunder, Olivier, 2019. "A robust optimization for a home health care routing and scheduling problem with consideration of uncertain travel and service times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 52-95.
    7. Gang Du & Xi Liang & Chuanwang Sun, 2017. "Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows," Sustainability, MDPI, vol. 9(2), pages 1-22, February.
    8. Braekers, Kris & Hartl, Richard F. & Parragh, Sophie N. & Tricoire, Fabien, 2016. "A bi-objective home care scheduling problem: Analyzing the trade-off between costs and client inconvenience," European Journal of Operational Research, Elsevier, vol. 248(2), pages 428-443.
    9. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).
    10. Amir M. Fathollahi-Fard & Abbas Ahmadi & Behrooz Karimi, 2021. "Multi-Objective Optimization of Home Healthcare with Working-Time Balancing and Care Continuity," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    11. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    12. Paola Cappanera & Maria Grazia Scutellà, 2022. "Addressing consistency and demand uncertainty in the Home Care planning problem," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 1-39, March.
    13. de Aguiar, Ana Raquel Pena & Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel, 2023. "Home care routing and scheduling problem with teams’ synchronization," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    14. Grenouilleau, Florian & Legrain, Antoine & Lahrichi, Nadia & Rousseau, Louis-Martin, 2019. "A set partitioning heuristic for the home health care routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 295-303.
    15. Jamal Abdul Nasir & Chuangyin Dang, 2020. "Quantitative thresholds based decision support approach for the home health care scheduling and routing problem," Health Care Management Science, Springer, vol. 23(2), pages 215-238, June.
    16. Mike Hewitt & Maciek Nowak & Nisha Nataraj, 2016. "Planning Strategies for Home Health Care Delivery," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-26, October.
    17. Sinem Kınay Savaşer & Bahar Yetis Kara, 2022. "Mobile healthcare services in rural areas: an application with periodic location routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 875-910, September.
    18. Lin, Meiyan & Ma, Lijun & Ying, Chengshuo, 2021. "Matching daily home health-care demands with supply in service-sharing platforms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    19. Cinar, Ahmet & Salman, F. Sibel & Bozkaya, Burcin, 2021. "Prioritized single nurse routing and scheduling for home healthcare services," European Journal of Operational Research, Elsevier, vol. 289(3), pages 867-878.
    20. Cappanera, Paola & Scutellà, Maria Grazia & Nervi, Federico & Galli, Laura, 2018. "Demand uncertainty in robust Home Care optimization," Omega, Elsevier, vol. 80(C), pages 95-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:83:y:2019:i:c:p:80-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.