IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i21p4562-d1275019.html
   My bibliography  Save this article

The Field Technician Scheduling Problem with Experience-Dependent Service Times

Author

Listed:
  • Vincent F. Yu

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan)

  • Yueh-Sheng Lin

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan)

  • Panca Jodiawan

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan)

  • Shih-Wei Lin

    (Department of Information Management, Chang Gung University, Taoyuan 333, Taiwan
    Department of Emergency Medicine, Keelung Chang Gung Memorial Hospital, Keelung 205, Taiwan
    Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei 243, Taiwan)

  • Yu-Chi Lai

    (Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan)

Abstract

This research studies the Field Technician Scheduling Problem with Experience-Dependent Service Times (FTSP–EDST), involving three main features: matching maintenance tasks with available technicians, sequencing the tasks, and considering the experience-dependent service times. Given a limited number of technicians, the objective is to maximize the collected profit for servicing tasks. This study formulates the problem as a mixed-integer linear programming model and proposes a Modified Iterated Local Search (MILS) to solve the benchmark problem instances of various sizes. A set of FTSP–EDST instances is generated based on existing publicly accessible data, and MILS is utilized to solve these newly generated instances. Computational results confirm the effectiveness of MILS in solving FTSP–EDST.

Suggested Citation

  • Vincent F. Yu & Yueh-Sheng Lin & Panca Jodiawan & Shih-Wei Lin & Yu-Chi Lai, 2023. "The Field Technician Scheduling Problem with Experience-Dependent Service Times," Mathematics, MDPI, vol. 11(21), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4562-:d:1275019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/21/4562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/21/4562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zamorano, Emilio & Stolletz, Raik, 2017. "Branch-and-price approaches for the Multiperiod Technician Routing and Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 55-68.
    2. Aldy Gunawan & Hoong Chuin Lau & Pieter Vansteenwegen & Kun Lu, 2017. "Well-tuned algorithms for the Team Orienteering Problem with Time Windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 861-876, August.
    3. Ehsan Pourjavad & Eman Almehdawe, 2022. "Optimization of the technician routing and scheduling problem for a telecommunication industry," Annals of Operations Research, Springer, vol. 315(1), pages 371-395, August.
    4. Hu, Qian & Lim, Andrew, 2014. "An iterative three-component heuristic for the team orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 232(2), pages 276-286.
    5. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    6. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    7. Lin, Shih-Wei & Yu, Vincent F., 2012. "A simulated annealing heuristic for the team orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 217(1), pages 94-107.
    8. Chen, Xi & Thomas, Barrett W. & Hewitt, Mike, 2016. "The technician routing problem with experience-based service times," Omega, Elsevier, vol. 61(C), pages 49-61.
    9. Alberto Caprara & Paolo Toth & Matteo Fischetti, 2000. "Algorithms for the Set Covering Problem," Annals of Operations Research, Springer, vol. 98(1), pages 353-371, December.
    10. Ines Mathlouthi & Michel Gendreau & Jean-Yves Potvin, 2021. "Branch-and-Price for a Multi-attribute Technician Routing and Scheduling Problem," SN Operations Research Forum, Springer, vol. 2(1), pages 1-35, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neda Tanoumand & Tonguç Ünlüyurt, 2021. "An exact algorithm for the resource constrained home health care vehicle routing problem," Annals of Operations Research, Springer, vol. 304(1), pages 397-425, September.
    2. Zhang, Shu & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2020. "Multi-period orienteering with uncertain adoption likelihood and waiting at customers," European Journal of Operational Research, Elsevier, vol. 282(1), pages 288-303.
    3. İbrahim Muter & Ş. İlker Birbil & Güvenç Şahin, 2010. "Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 603-619, November.
    4. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    5. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    6. Fangzhou Yan & Huaxin Qiu & Dongya Han, 2023. "Lagrangian Heuristic for Multi-Depot Technician Planning of Product Distribution and Installation with a Lunch Break," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    7. Emilio Zamorano & Annika Becker & Raik Stolletz, 2018. "Task assignment with start time-dependent processing times for personnel at check-in counters," Journal of Scheduling, Springer, vol. 21(1), pages 93-109, February.
    8. Aldy Gunawan & Hoong Chuin Lau & Pieter Vansteenwegen & Kun Lu, 2017. "Well-tuned algorithms for the Team Orienteering Problem with Time Windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(8), pages 861-876, August.
    9. Nielsen, Clara Chini & Pisinger, David, 2023. "Tactical planning for dynamic technician routing and scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    10. Damianos Gavalas & Charalampos Konstantopoulos & Konstantinos Mastakas & Grammati Pantziou, 2019. "Efficient Cluster-Based Heuristics for the Team Orienteering Problem with Time Windows," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-44, February.
    11. Chen, Xi & Li, Kaiwen & Lin, Sidian & Ding, Xiaosong, 2024. "Technician routing and scheduling with employees’ learning through implicit cross-training strategy," International Journal of Production Economics, Elsevier, vol. 271(C).
    12. Gutiérrez-Jarpa, Gabriel & Desaulniers, Guy & Laporte, Gilbert & Marianov, Vladimir, 2010. "A branch-and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows," European Journal of Operational Research, Elsevier, vol. 206(2), pages 341-349, October.
    13. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    14. Zhiping Zuo & Yanhui Li & Jing Fu & Jianlin Wu, 2019. "Human Resource Scheduling Model and Algorithm with Time Windows and Multi-Skill Constraints," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    15. Theodore Athanasopoulos & Ioannis Minis, 2013. "Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework," Annals of Operations Research, Springer, vol. 206(1), pages 1-22, July.
    16. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    17. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    18. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    19. Qie He & Stefan Irnich & Yongjia Song, 2018. "Branch-Cut-and-Price for the Vehicle Routing Problem with Time Windows and Convex Node Costs," Working Papers 1804, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Amine Masmoudi, M. & Mancini, Simona & Baldacci, Roberto & Kuo, Yong-Hong, 2022. "Vehicle routing problems with drones equipped with multi-package payload compartments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:21:p:4562-:d:1275019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.