IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v286y2020i2p477-493.html
   My bibliography  Save this article

Binary driver-customer familiarity in service routing

Author

Listed:
  • Ulmer, Marlin
  • Nowak, Maciek
  • Mattfeld, Dirk
  • Kaminski, Bogumił

Abstract

With a growing number of services provided at or to a customer’s home, the familiarity of the service provider, or driver, with the customer’s location is increasingly important. One prominent example is retail distribution, where familiarity with the delivery location can save the driver time. In contrast to other kinds of familiarity (e.g., tasks, customer needs) that continually increase with a larger number of repetitions, location familiarity is primarily established with a driver’s first visit. Thus, familiarity results from operational routing decisions. However, as we show in this paper, there is potential value in considering the tactical value of familiarity and its development over a longer horizon. To this end, we develop and solve a tactical model to specify the long-term implications of improved driver-customer familiarity, introducing a solution methodology for the stochastic and dynamic multi-period routing problem with driver-customer familiarity. Our methodology utilizes a policy that explicitly invests in the familiarity between selected driver-customer pairs, encouraging the development of pairs that are tactically beneficial. We determine the appropriate investment dimensions for each pair, considering which locations a driver has visited and how many drivers have visited a location. We show that under the problem conditions tested this investment policy leads to a reduction in cost compared to a short term, myopic policy, while increasing the overall level of familiarity between drivers and customers and hedging against driver or customer turnover. We also find that focusing only on routing or on exploiting existing familiarity leads to substantial increases in cost.

Suggested Citation

  • Ulmer, Marlin & Nowak, Maciek & Mattfeld, Dirk & Kaminski, Bogumił, 2020. "Binary driver-customer familiarity in service routing," European Journal of Operational Research, Elsevier, vol. 286(2), pages 477-493.
  • Handle: RePEc:eee:ejores:v:286:y:2020:i:2:p:477-493
    DOI: 10.1016/j.ejor.2020.03.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720302514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.03.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silviya Valeva & Mike Hewitt & Barrett W. Thomas, 2017. "A matheuristic for workforce planning with employee learning and stochastic demand," International Journal of Production Research, Taylor & Francis Journals, vol. 55(24), pages 7380-7397, December.
    2. Ilgaz Sungur & Yingtao Ren & Fernando Ordóñez & Maged Dessouky & Hongsheng Zhong, 2010. "A Model and Algorithm for the Courier Delivery Problem with Uncertainty," Transportation Science, INFORMS, vol. 44(2), pages 193-205, May.
    3. De Bruecker, Philippe & Van den Bergh, Jorne & Beliën, Jeroen & Demeulemeester, Erik, 2015. "Workforce planning incorporating skills: State of the art," European Journal of Operational Research, Elsevier, vol. 243(1), pages 1-16.
    4. Haughton, Michael A., 2008. "The efficacy of exclusive territory assignments to delivery vehicle drivers," European Journal of Operational Research, Elsevier, vol. 184(1), pages 24-38, January.
    5. Luo, Zhixing & Qin, Hu & Che, ChanHou & Lim, Andrew, 2015. "On service consistency in multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 243(3), pages 731-744.
    6. Braekers, Kris & Kovacs, Attila A., 2016. "A multi-period dial-a-ride problem with driver consistency," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 355-377.
    7. Attila A. Kovacs & Bruce L. Golden & Richard F. Hartl & Sophie N. Parragh, 2015. "The Generalized Consistent Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 796-816, November.
    8. Valeva, Silviya & Hewitt, Mike & Thomas, Barrett W. & Brown, Kenneth G., 2017. "Balancing flexibility and inventory in workforce planning with learning," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 194-207.
    9. Chris Groër & Bruce Golden & Edward Wasil, 2009. "The Consistent Vehicle Routing Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 630-643, February.
    10. Figliozzi, Miguel Andres, 2007. "Analysis of the efficiency of urban commercial vehicle tours: Data collection, methodology, and policy implications," Transportation Research Part B: Methodological, Elsevier, vol. 41(9), pages 1014-1032, November.
    11. Karen Smilowitz & Maciek Nowak & Tingting Jiang, 2013. "Workforce Management in Periodic Delivery Operations," Transportation Science, INFORMS, vol. 47(2), pages 214-230, May.
    12. Subramanyam, Anirudh & Gounaris, Chrysanthos E., 2016. "A branch-and-cut framework for the consistent traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 248(2), pages 384-395.
    13. Mike Hewitt & Maciek Nowak & Nisha Nataraj, 2016. "Planning Strategies for Home Health Care Delivery," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-26, October.
    14. Kunlei Lian & Ashlea Bennett Milburn & Ronald L. Rardin, 2016. "An improved multi-directional local search algorithm for the multi-objective consistent vehicle routing problem," IISE Transactions, Taylor & Francis Journals, vol. 48(10), pages 975-992, October.
    15. Li, Ninghua & Li, Ling X., 2000. "Modeling staffing flexibility: A case of China," European Journal of Operational Research, Elsevier, vol. 124(2), pages 255-266, July.
    16. Chen, Xi & Thomas, Barrett W. & Hewitt, Mike, 2016. "The technician routing problem with experience-based service times," Omega, Elsevier, vol. 61(C), pages 49-61.
    17. Hongsheng Zhong & Randolph W. Hall & Maged Dessouky, 2007. "Territory Planning and Vehicle Dispatching with Driver Learning," Transportation Science, INFORMS, vol. 41(1), pages 74-89, February.
    18. Fowler, John W. & Wirojanagud, Pornsarun & Gel, Esma S., 2008. "Heuristics for workforce planning with worker differences," European Journal of Operational Research, Elsevier, vol. 190(3), pages 724-740, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dieter, Peter & Caron, Matthew & Schryen, Guido, 2023. "Integrating driver behavior into last-mile delivery routing: Combining machine learning and optimization in a hybrid decision support framework," European Journal of Operational Research, Elsevier, vol. 311(1), pages 283-300.
    2. Nowak, Maciek & Szufel, Przemysław, 2024. "Technician routing and scheduling for the sharing economy," European Journal of Operational Research, Elsevier, vol. 314(1), pages 15-31.
    3. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    4. Chen, Xi & Li, Kaiwen & Lin, Sidian & Ding, Xiaosong, 2024. "Technician routing and scheduling with employees’ learning through implicit cross-training strategy," International Journal of Production Economics, Elsevier, vol. 271(C).
    5. Minghong Ma & Fei Yang, 2024. "Dynamic migratory beekeeping route recommendation based on spatio-temporal distribution of nectar sources," Annals of Operations Research, Springer, vol. 341(2), pages 1075-1105, October.
    6. Ausseil, Rosemonde & Ulmer, Marlin W. & Pazour, Jennifer A., 2024. "Online acceptance probability approximation in peer-to-peer transportation," Omega, Elsevier, vol. 123(C).
    7. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    8. Li, Yifu & Zhou, Chenhao & Yuan, Peixue & Ngo, Thi Tu Anh, 2023. "Experience-based territory planning and driver assignment with predicted demand and driver present condition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    9. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stavropoulou, F. & Repoussis, P.P. & Tarantilis, C.D., 2019. "The Vehicle Routing Problem with Profits and consistency constraints," European Journal of Operational Research, Elsevier, vol. 274(1), pages 340-356.
    2. Yang, Meng & Ni, Yaodong & Song, Qinyu, 2022. "Optimizing driver consistency in the vehicle routing problem under uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    3. Zhen, Lu & Gao, Jiajing & Tan, Zheyi & Laporte, Gilbert & Baldacci, Roberto, 2023. "Territorial design for customers with demand frequency," European Journal of Operational Research, Elsevier, vol. 309(1), pages 82-101.
    4. Li, Yifu & Zhou, Chenhao & Yuan, Peixue & Ngo, Thi Tu Anh, 2023. "Experience-based territory planning and driver assignment with predicted demand and driver present condition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    5. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    6. Jost, Christian & Jungwirth, Alexander & Kolisch, Rainer & Schiffels, Sebastian, 2022. "Consistent vehicle routing with pickup decisions - Insights from sport academy training transfers," European Journal of Operational Research, Elsevier, vol. 298(1), pages 337-350.
    7. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    8. Dominik Goeke & Roberto Roberti & Michael Schneider, 2019. "Exact and Heuristic Solution of the Consistent Vehicle-Routing Problem," Transportation Science, INFORMS, vol. 53(4), pages 1023-1042, July.
    9. Rodríguez-Martín, Inmaculada & Yaman, Hande, 2022. "Periodic Vehicle Routing Problem with Driver Consistency and service time optimization," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 468-484.
    10. Zhou, Lin & Zhen, Lu & Baldacci, Roberto & Boschetti, Marco & Dai, Ying & Lim, Andrew, 2021. "A Heuristic Algorithm for solving a large-scale real-world territory design problem," Omega, Elsevier, vol. 103(C).
    11. Michael Schneider & Andreas Stenger & Fabian Schwahn & Daniele Vigo, 2015. "Territory-Based Vehicle Routing in the Presence of Time-Window Constraints," Transportation Science, INFORMS, vol. 49(4), pages 732-751, November.
    12. Braekers, Kris & Kovacs, Attila A., 2016. "A multi-period dial-a-ride problem with driver consistency," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 355-377.
    13. Díaz-Ríos, Daniel & Salazar-González, Juan-José, 2024. "Mathematical formulations for consistent travelling salesman problems," European Journal of Operational Research, Elsevier, vol. 313(2), pages 465-477.
    14. Anirudh Subramanyam & Chrysanthos E. Gounaris, 2018. "A Decomposition Algorithm for the Consistent Traveling Salesman Problem with Vehicle Idling," Transportation Science, INFORMS, vol. 52(2), pages 386-401, March.
    15. Paola Cappanera & Maria Grazia Scutellà, 2022. "Addressing consistency and demand uncertainty in the Home Care planning problem," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 1-39, March.
    16. Nowak, Maciek & Szufel, Przemysław, 2024. "Technician routing and scheduling for the sharing economy," European Journal of Operational Research, Elsevier, vol. 314(1), pages 15-31.
    17. Neves-Moreira, Fábio & Pereira da Silva, Diogo & Guimarães, Luís & Amorim, Pedro & Almada-Lobo, Bernardo, 2018. "The time window assignment vehicle routing problem with product dependent deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 163-183.
    18. Bender, Matthias & Kalcsics, Jörg & Meyer, Anne, 2020. "Districting for parcel delivery services – A two-Stage solution approach and a real-World case study," Omega, Elsevier, vol. 96(C).
    19. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).
    20. Mohsen Emadikhiav & David Bergman & Robert Day, 2020. "Consistent Routing and Scheduling with Simultaneous Pickups and Deliveries," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1937-1955, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:286:y:2020:i:2:p:477-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.