IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v166y2022ics1366554522002617.html
   My bibliography  Save this article

Stochastic one-way carsharing systems with dynamic relocation incentives through preference learning

Author

Listed:
  • Liu, Yang
  • Xie, Jiaohong
  • Chen, Nan

Abstract

The development of carsharing services is expected to achieve greater resource efficiency and provide a sustainable solution for future mobility systems. However, operators inevitably face the imbalance between demand and supply in one-way carsharing systems (CSSs). Also, it is challenging for them to make quick and efficient operational decisions when both travel time and trip requests are uncertain. This study leverages historical and online data and proposes a learning-based methodology to quickly make real-time decisions for CSSs, including vehicle assignment, relocation, and user incentive decisions. Compared to the literature in approximate dynamic programming (ADP), which mostly focuses on uncertainty in trip requests, we propose an offline–online ADP approach to consider the temporal and spatial uncertainty in both trip requests and travel time. To tackle our high-dimensional problem, we integrate an online look-ahead policy into the offline value function approximation (VFA) policy to produce a computational tractable high-quality dynamic fleet management policy. Furthermore, a user-based relocation strategy is investigated to rebalance the fleet distribution to meet the demand better. Specifically, we aim to solve the optimal incentives the operator could offer to users to relocate cars, while user preferences towards relocation incentives are generally unknown in practice. We further enhance our anticipatory policy by developing an online module via Bayesian learning that learns the preference model on the fly using users’ revealed preference data collected online. The numerical experiments in Singapore demonstrate our offline–online ADP approach improves the solution quality and significantly compared to offline VFA policy. The results also confirm the importance of incorporating uncertainty in travel time. The benefits of the user-based relocation scheme using the Bayesian learning method using online data to enhance anticipatory decisions and learn unknown user preferences are also illustrated. It quickly and efficiently learns the user preferences, which further reduces the relocation cost and increases the profit.

Suggested Citation

  • Liu, Yang & Xie, Jiaohong & Chen, Nan, 2022. "Stochastic one-way carsharing systems with dynamic relocation incentives through preference learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:transe:v:166:y:2022:i:c:s1366554522002617
    DOI: 10.1016/j.tre.2022.102884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522002617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Dung-Ying & Kuo, Jia-Kai, 2021. "The vehicle deployment and relocation problem for electric vehicle sharing systems considering demand and parking space stochasticity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    2. Brandstätter, Georg & Kahr, Michael & Leitner, Markus, 2017. "Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 17-35.
    3. Zhao, Meng & Li, Xiaopeng & Yin, Jiateng & Cui, Jianxun & Yang, Lixing & An, Shi, 2018. "An integrated framework for electric vehicle rebalancing and staff relocation in one-way carsharing systems: Model formulation and Lagrangian relaxation-based solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 542-572.
    4. Philipp Ströhle & Christoph M. Flath & Johannes Gärttner, 2019. "Leveraging Customer Flexibility for Car-Sharing Fleet Optimization," Service Science, INFORMS, vol. 53(1), pages 42-61, February.
    5. Jorge, Diana & Molnar, Goran & de Almeida Correia, Gonçalo Homem, 2015. "Trip pricing of one-way station-based carsharing networks with zone and time of day price variations," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 461-482.
    6. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2017. "An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 214-237.
    7. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    8. Li, Xiaopeng & Ma, Jiaqi & Cui, Jianxun & Ghiasi, Amir & Zhou, Fang, 2016. "Design framework of large-scale one-way electric vehicle sharing systems: A continuum approximation model," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 21-45.
    9. Daniel R. Jiang & Warren B. Powell, 2015. "Optimal Hour-Ahead Bidding in the Real-Time Electricity Market with Battery Storage Using Approximate Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 525-543, August.
    10. Al-Kanj, Lina & Nascimento, Juliana & Powell, Warren B., 2020. "Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1088-1106.
    11. Huseyin Topaloglu & Warren Powell, 2007. "Incorporating Pricing Decisions into the Stochastic Dynamic Fleet Management Problem," Transportation Science, INFORMS, vol. 41(3), pages 281-301, August.
    12. Belgacem Bouzaiene-Ayari & Clark Cheng & Sourav Das & Ricardo Fiorillo & Warren B. Powell, 2016. "From Single Commodity to Multiattribute Models for Locomotive Optimization: A Comparison of Optimal Integer Programming and Approximate Dynamic Programming," Transportation Science, INFORMS, vol. 50(2), pages 366-389, May.
    13. Wang, Xiaolei & He, Fang & Yang, Hai & Oliver Gao, H., 2016. "Pricing strategies for a taxi-hailing platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 212-231.
    14. Nourinejad, Mehdi & Roorda, Matthew J., 2014. "A dynamic carsharing decision support system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 36-50.
    15. Xu, Min & Meng, Qiang & Liu, Zhiyuan, 2018. "Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 60-82.
    16. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    17. Ariel Waserhole & Vincent Jost, 2016. "Pricing in vehicle sharing systems: optimization in queuing networks with product forms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 293-320, August.
    18. Kek, Alvina G.H. & Cheu, Ruey Long & Meng, Qiang & Fung, Chau Ha, 2009. "A decision support system for vehicle relocation operations in carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(1), pages 149-158, January.
    19. Wang, Xiaolei & Liu, Wei & Yang, Hai & Wang, Dan & Ye, Jieping, 2020. "Customer behavioural modelling of order cancellation in coupled ride-sourcing and taxi markets," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 358-378.
    20. Mengshi Lu & Zhihao Chen & Siqian Shen, 2018. "Optimizing the Profitability and Quality of Service in Carshare Systems Under Demand Uncertainty," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 162-180, May.
    21. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    22. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    23. Hu, Lu & Liu, Yang, 2016. "Joint design of parking capacities and fleet size for one-way station-based carsharing systems with road congestion constraints," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 268-299.
    24. Mehdi Nourinejad & Matthew Roorda, 2015. "Carsharing operations policies: a comparison between one-way and two-way systems," Transportation, Springer, vol. 42(3), pages 497-518, May.
    25. Zhang, Dong & Liu, Yang & He, Shuangchi, 2019. "Vehicle assignment and relays for one-way electric car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 125-146.
    26. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    27. G J King & H Topaloglu, 2007. "Incorporating the pricing decisions into the dynamic fleet management problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(8), pages 1065-1074, August.
    28. Shaheen, Susan & Cohen, Adam & Jaffee, Mark, 2018. "Innovative Mobility: Carsharing Outlook," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt49j961wb, Institute of Transportation Studies, UC Berkeley.
    29. Shaheen, Susan PhD & Cohen, Adam & Jaffee, Mark, 2018. "Innovative Mobility: Carsharing Outlook," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1mw8n13h, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Si & Sun, Huijun & Liu, Yang & Lv, Ying & Wu, Jianjun & Feng, Xiaoyan, 2024. "Carsharing equitable relocation problem: A two-stage stochastic programming approach with learning-embedded endogenous uncertainty in demand," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    2. Chen, Xi & Li, Kaiwen & Lin, Sidian & Ding, Xiaosong, 2024. "Technician routing and scheduling with employees’ learning through implicit cross-training strategy," International Journal of Production Economics, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    4. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    5. Huang, Kai & An, Kun & Correia, Gonçalo Homem de Almeida, 2020. "Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1075-1091.
    6. Zhang, Si & Sun, Huijun & Wang, Xu & Lv, Ying & Wu, Jianjun, 2022. "Optimization of personalized price discounting scheme for one-way station-based carsharing systems," European Journal of Operational Research, Elsevier, vol. 303(1), pages 220-238.
    7. Nguyen, Tri K. & Hoang, Nam H. & Vu, Hai L., 2022. "A unified activity-based framework for one-way car-sharing services in multi-modal transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    8. Xu, Min & Meng, Qiang & Liu, Zhiyuan, 2018. "Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 60-82.
    9. Çalık, Hatice & Fortz, Bernard, 2019. "A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 121-150.
    10. Chang, Ximing & Wu, Jianjun & Correia, Gonçalo Homem de Almeida & Sun, Huijun & Feng, Ziyan, 2022. "A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    11. Stokkink, Patrick & Geroliminis, Nikolas, 2021. "Predictive user-based relocation through incentives in one-way car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 230-249.
    12. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    13. Cui, Shaohua & Ma, Xiaolei & Zhang, Mingheng & Yu, Bin & Yao, Baozhen, 2022. "The parallel mobile charging service for free-floating shared electric vehicle clusters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    14. Zhang, Si & Sun, Huijun & Liu, Yang & Lv, Ying & Wu, Jianjun & Feng, Xiaoyan, 2024. "Carsharing equitable relocation problem: A two-stage stochastic programming approach with learning-embedded endogenous uncertainty in demand," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    15. Obrenović, Nikola & Ataç, Selin & Bierlaire, Michel, 2024. "Light electric vehicle sharing systems: Functional design of a comprehensive decision making solution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    16. Yang, Jie & Hu, Lu & Jiang, Yangsheng, 2022. "An overnight relocation problem for one-way carsharing systems considering employment planning, return restrictions, and ride sharing of temporary workers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    17. Qin, Hu & Su, E. & Wang, Yilun & Li, Jiliu, 2022. "Branch-and-price-and-cut for the electric vehicle relocation problem in one-way carsharing systems," Omega, Elsevier, vol. 109(C).
    18. Huang, Wei & Huang, Wentao & Jian, Sisi, 2022. "One-way carsharing service design under demand uncertainty: A service reliability-based two-stage stochastic program approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    19. Lu, Xiaonong & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Song, Hao & Wang, Wanying, 2020. "Charging and relocating optimization for electric vehicle car-sharing: An event-based strategy improvement approach," Energy, Elsevier, vol. 207(C).
    20. Zhao, Meng & Li, Xiaopeng & Yin, Jiateng & Cui, Jianxun & Yang, Lixing & An, Shi, 2018. "An integrated framework for electric vehicle rebalancing and staff relocation in one-way carsharing systems: Model formulation and Lagrangian relaxation-based solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 542-572.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:166:y:2022:i:c:s1366554522002617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.