IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v22y2019i2d10.1007_s10729-018-9437-7.html
   My bibliography  Save this article

A proactive transfer policy for critical patient flow management

Author

Listed:
  • Jaime González

    (Pontificia Universidad Católica de Chile)

  • Juan-Carlos Ferrer

    (Pontificia Universidad Católica de Chile)

  • Alejandro Cataldo

    (Pontificia Universidad Católica de Chile)

  • Luis Rojas

    (Pontificia Universidad Católica de Chile)

Abstract

Hospital emergency departments are often overcrowded, resulting in long wait times and a public perception of poor attention. Delays in transferring patients needing further treatment increases emergency department congestion, has negative impacts on their health and may increase their mortality rates. A model built around a Markov decision process is proposed to improve the efficiency of patient flows between the emergency department and other hospital units. With each day divided into time periods, the formulation estimates bed demand for the next period as the basis for determining a proactive rather than reactive transfer decision policy. Due to the high dimensionality of the optimization problem involved, an approximate dynamic programming approach is used to derive an approximation of the optimal decision policy, which indicates that a certain number of beds should be kept free in the different units as a function of the next period demand estimate. Testing the model on two instances of different sizes demonstrates that the optimal number of patient transfers between units changes when the emergency patient arrival rate for transfer to other units changes at a single unit, but remains stable if the change is proportionally the same for all units. In a simulation using real data for a hospital in Chile, significant improvements are achieved by the model in key emergency department performance indicators such as patient wait times (reduction higher than 50%), patient capacity (21% increase) and queue abandonment (from 7% down to less than 1%).

Suggested Citation

  • Jaime González & Juan-Carlos Ferrer & Alejandro Cataldo & Luis Rojas, 2019. "A proactive transfer policy for critical patient flow management," Health Care Management Science, Springer, vol. 22(2), pages 287-303, June.
  • Handle: RePEc:kap:hcarem:v:22:y:2019:i:2:d:10.1007_s10729-018-9437-7
    DOI: 10.1007/s10729-018-9437-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-018-9437-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-018-9437-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen, Anders Reenberg & Nielsen, Bo Friis & Reinhardt, Line Blander, 2017. "Optimization of hospital ward resources with patient relocation using Markov chain modeling," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1152-1163.
    2. Luscombe, Ruth & Kozan, Erhan, 2016. "Dynamic resource allocation to improve emergency department efficiency in real time," European Journal of Operational Research, Elsevier, vol. 255(2), pages 593-603.
    3. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    4. Pablo Santibáñez & Vincent Chow & John French & Martin Puterman & Scott Tyldesley, 2009. "Reducing patient wait times and improving resource utilization at British Columbia Cancer Agency’s ambulatory care unit through simulation," Health Care Management Science, Springer, vol. 12(4), pages 392-407, December.
    5. Guido Kaandorp & Ger Koole, 2007. "Optimal outpatient appointment scheduling," Health Care Management Science, Springer, vol. 10(3), pages 217-229, September.
    6. Angela Testi & Elena Tanfani & Giancarlo Torre, 2007. "A three-phase approach for operating theatre schedules," Health Care Management Science, Springer, vol. 10(2), pages 163-172, June.
    7. Fermín Mallor & Cristina Azcárate, 2014. "Combining optimization with simulation to obtain credible models for intensive care units," Annals of Operations Research, Springer, vol. 221(1), pages 255-271, October.
    8. De Vuyst, Stijn & Bruneel, Herwig & Fiems, Dieter, 2014. "Computationally efficient evaluation of appointment schedules in health care," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1142-1154.
    9. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    10. Ahmed, Mohamed A. & Alkhamis, Talal M., 2009. "Simulation optimization for an emergency department healthcare unit in Kuwait," European Journal of Operational Research, Elsevier, vol. 198(3), pages 936-942, November.
    11. Claude Lefévre, 1981. "Optimal Control of a Birth and Death Epidemic Process," Operations Research, INFORMS, vol. 29(5), pages 971-982, October.
    12. J K Cochran & K Roche, 2008. "A queuing-based decision support methodology to estimate hospital inpatient bed demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1471-1482, November.
    13. Ben Bachouch, Rym & Guinet, Alain & Hajri-Gabouj, Sonia, 2012. "An integer linear model for hospital bed planning," International Journal of Production Economics, Elsevier, vol. 140(2), pages 833-843.
    14. Steven Thompson & Manuel Nunez & Robert Garfinkel & Matthew D. Dean, 2009. "OR Practice---Efficient Short-Term Allocation and Reallocation of Patients to Floors of a Hospital During Demand Surges," Operations Research, INFORMS, vol. 57(2), pages 261-273, April.
    15. Randolph Hall, 2012. "Bed Assignment and Bed Management," International Series in Operations Research & Management Science, in: Randolph Hall (ed.), Handbook of Healthcare System Scheduling, chapter 0, pages 177-200, Springer.
    16. Jae-Hyeon Ahn & John C. Hornberger, 1996. "Involving Patients in the Cadaveric Kidney Transplant Allocation Process: A Decision-Theoretic Perspective," Management Science, INFORMS, vol. 42(5), pages 629-641, May.
    17. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    18. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    19. Rashwan, Wael & Abo-Hamad, Waleed & Arisha, Amr, 2015. "A system dynamics view of the acute bed blockage problem in the Irish healthcare system," European Journal of Operational Research, Elsevier, vol. 247(1), pages 276-293.
    20. Arnoud Bruin & A. Rossum & M. Visser & G. Koole, 2007. "Modeling the emergency cardiac in-patient flow: an application of queuing theory," Health Care Management Science, Springer, vol. 10(2), pages 125-137, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harrou, Fouzi & Dairi, Abdelkader & Kadri, Farid & Sun, Ying, 2020. "Forecasting emergency department overcrowding: A deep learning framework," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fermín Mallor & Cristina Azcárate & Julio Barado, 2016. "Control problems and management policies in health systems: application to intensive care units," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 62-89, June.
    2. Camila Ramos & Alejandro Cataldo & Juan–Carlos Ferrer, 2020. "Appointment and patient scheduling in chemotherapy: a case study in Chilean hospitals," Annals of Operations Research, Springer, vol. 286(1), pages 411-439, March.
    3. Adam Diamant, 2021. "Dynamic multistage scheduling for patient-centered care plans," Health Care Management Science, Springer, vol. 24(4), pages 827-844, December.
    4. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    5. Amir Elalouf & Guy Wachtel, 2022. "Queueing Problems in Emergency Departments: A Review of Practical Approaches and Research Methodologies," SN Operations Research Forum, Springer, vol. 3(1), pages 1-46, March.
    6. Hejer Khlif Hachicha & Farah Zeghal Mansour, 2018. "Two-MILP models for scheduling elective surgeries within a private healthcare facility," Health Care Management Science, Springer, vol. 21(3), pages 376-392, September.
    7. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    8. Antoine Sauré & Jonathan Patrick & Martin L. Puterman, 2015. "Simulation-Based Approximate Policy Iteration with Generalized Logistic Functions," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 579-595, August.
    9. Marquinez, José Tomás & Sauré, Antoine & Cataldo, Alejandro & Ferrer, Juan-Carlos, 2021. "Identifying proactive ICU patient admission, transfer and diversion policies in a public-private hospital network," European Journal of Operational Research, Elsevier, vol. 295(1), pages 306-320.
    10. Wu, Xiaodan & Li, Juan & Chu, Chao-Hsien, 2019. "Modeling multi-stage healthcare systems with service interactions under blocking for bed allocation," European Journal of Operational Research, Elsevier, vol. 278(3), pages 927-941.
    11. Christos Zacharias & Michael Pinedo, 2017. "Managing Customer Arrivals in Service Systems with Multiple Identical Servers," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 639-656, October.
    12. Pengyi Shi & Mabel C. Chou & J. G. Dai & Ding Ding & Joe Sim, 2016. "Models and Insights for Hospital Inpatient Operations: Time-Dependent ED Boarding Time," Management Science, INFORMS, vol. 62(1), pages 1-28, January.
    13. Saied Samiedaluie & Beste Kucukyazici & Vedat Verter & Dan Zhang, 2017. "Managing Patient Admissions in a Neurology Ward," Operations Research, INFORMS, vol. 65(3), pages 635-656, June.
    14. Reihaneh, Mohammad & Ansari, Sina & Farhadi, Farbod, 2023. "Patient appointment scheduling at hemodialysis centers: An exact branch and price approach," European Journal of Operational Research, Elsevier, vol. 309(1), pages 35-52.
    15. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    16. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    17. Niyirora, Jerome & Zhuang, Jun, 2017. "Fluid approximations and control of queues in emergency departments," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1110-1124.
    18. repec:ipg:wpaper:14 is not listed on IDEAS
    19. Matthias Deceuninck & Stijn Vuyst & Dieter Claeys & Dieter Fiems, 2021. "Appointment games with unobservable and observable schedules," Annals of Operations Research, Springer, vol. 307(1), pages 93-110, December.
    20. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    21. Yen-Yi Feng & I-Chin Wu & Tzu-Li Chen, 2017. "Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm," Health Care Management Science, Springer, vol. 20(1), pages 55-75, March.
    22. Kemper, Benjamin & Klaassen, Chris A.J. & Mandjes, Michel, 2014. "Optimized appointment scheduling," European Journal of Operational Research, Elsevier, vol. 239(1), pages 243-255.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:22:y:2019:i:2:d:10.1007_s10729-018-9437-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.