IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v22y2019i4d10.1007_s10729-018-9459-1.html
   My bibliography  Save this article

Patient scheduling based on a service-time prediction model: a data-driven study for a radiotherapy center

Author

Listed:
  • Dina Bentayeb

    (Ecole Polytechnique de Montréal)

  • Nadia Lahrichi

    (Ecole Polytechnique de Montréal)

  • Louis-Martin Rousseau

    (Ecole Polytechnique de Montréal)

Abstract

With the growth of the population, access to medical care is in high demand, and queues are becoming longer. The situation is more critical when it concerns serious diseases such as cancer. The primary problem is inefficient management of patients rather than a lack of resources. In this work, we collaborate with the Centre Intégré de Cancérologie de Laval (CICL). We present a data-driven study based on a nonblock approach to patient appointment scheduling. We use data mining and regression methods to develop a prediction model for radiotherapy treatment duration. The best model is constructed by a classification and regression tree; its accuracy is 84%. Based on the predicted duration, we design new workday divisions, which are evaluated with various patient sequencing rules. The results show that with our approach, 40 additional patients are treated daily in the cancer center, and a considerable improvement is noticed in patient waiting times and technologist overtime.

Suggested Citation

  • Dina Bentayeb & Nadia Lahrichi & Louis-Martin Rousseau, 2019. "Patient scheduling based on a service-time prediction model: a data-driven study for a radiotherapy center," Health Care Management Science, Springer, vol. 22(4), pages 768-782, December.
  • Handle: RePEc:kap:hcarem:v:22:y:2019:i:4:d:10.1007_s10729-018-9459-1
    DOI: 10.1007/s10729-018-9459-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-018-9459-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-018-9459-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harris, Shannon L. & May, Jerrold H. & Vargas, Luis G., 2016. "Predictive analytics model for healthcare planning and scheduling," European Journal of Operational Research, Elsevier, vol. 253(1), pages 121-131.
    2. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    3. Golmohammadi, Davood & Radnia, Naeimeh, 2016. "Prediction modeling and pattern recognition for patient readmission," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 151-161.
    4. Conforti, D. & Guerriero, F. & Guido, R., 2010. "Non-block scheduling with priority for radiotherapy treatments," European Journal of Operational Research, Elsevier, vol. 201(1), pages 289-296, February.
    5. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    6. Song-Hee Kim & Ward Whitt & Won Chul Cha, 2018. "A Data-Driven Model of an Appointment-Generated Arrival Process at an Outpatient Clinic," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 181-199, February.
    7. K J Glowacka & R M Henry & J H May, 2009. "A hybrid data mining/simulation approach for modelling outpatient no-shows in clinic scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1056-1068, August.
    8. Antoine Legrain & Marie-Andrée Fortin & Nadia Lahrichi & Louis-Martin Rousseau, 2015. "Online stochastic optimization of radiotherapy patient scheduling," Health Care Management Science, Springer, vol. 18(2), pages 110-123, June.
    9. Lotfi, Vahid & Torres, Edgar, 2014. "Improving an outpatient clinic utilization using decision analysis-based patient scheduling," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 115-126.
    10. Adel Alaeddini & Kai Yang & Chandan Reddy & Susan Yu, 2011. "A probabilistic model for predicting the probability of no-show in hospital appointments," Health Care Management Science, Springer, vol. 14(2), pages 146-157, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golmohammadi, Davood & Zhao, Lingyu & Dreyfus, David, 2023. "Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics," Omega, Elsevier, vol. 120(C).
    2. Jongkyung Shin & Donggi Augustine Lee & Juram Kim & Chiehyeon Lim & Byung-Kwan Choi, 2024. "Dissatisfaction-considered waiting time prediction for outpatients with interpretable machine learning," Health Care Management Science, Springer, vol. 27(3), pages 370-390, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kılıç, Hakan & Güneş, Evrim Didem, 2024. "Patient adherence in healthcare operations: A narrative review," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    2. Golmohammadi, Davood & Zhao, Lingyu & Dreyfus, David, 2023. "Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics," Omega, Elsevier, vol. 120(C).
    3. Roland Braune & Walter J. Gutjahr & Petra Vogl, 2022. "Stochastic radiotherapy appointment scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1239-1277, December.
    4. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    5. Bruno Vieira & Derya Demirtas & Jeroen B. Kamer & Erwin W. Hans & Louis-Martin Rousseau & Nadia Lahrichi & Wim H. Harten, 2020. "Radiotherapy treatment scheduling considering time window preferences," Health Care Management Science, Springer, vol. 23(4), pages 520-534, December.
    6. Kaining Shao & Wenjuan Fan & Zishu Yang & Shanlin Yang & Panos M. Pardalos, 2022. "A column generation approach for patient scheduling with setup time and deteriorating treatment duration," Operational Research, Springer, vol. 22(3), pages 2555-2586, July.
    7. Simsek, Serhat & Dag, Ali & Tiahrt, Thomas & Oztekin, Asil, 2021. "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, Elsevier, vol. 100(C).
    8. Tu-San Pham & Louis-Martin Rousseau & Patrick Causmaecker, 2022. "A two-phase approach for the Radiotherapy Scheduling Problem," Health Care Management Science, Springer, vol. 25(2), pages 191-207, June.
    9. Serhat Gul, 2018. "A Stochastic Programming Approach for Appointment Scheduling Under Limited Availability of Surgery Turnover Teams," Service Science, INFORMS, vol. 10(3), pages 277-288, September.
    10. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    11. Shehadeh, Karmel S. & Cohn, Amy E.M. & Jiang, Ruiwei, 2020. "A distributionally robust optimization approach for outpatient colonoscopy scheduling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 549-561.
    12. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    13. Kuiper, Alex & de Mast, Jeroen & Mandjes, Michel, 2021. "The problem of appointment scheduling in outpatient clinics: A multiple case study of clinical practice," Omega, Elsevier, vol. 98(C).
    14. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    15. Hyun-Jung Alvarez-Oh & Hari Balasubramanian & Ekin Koker & Ana Muriel, 2018. "Stochastic Appointment Scheduling in a Team Primary Care Practice with Two Flexible Nurses and Two Dedicated Providers," Service Science, INFORMS, vol. 10(3), pages 241-260, September.
    16. Oualid Jouini & Saif Benjaafar & Bingnan Lu & Siqiao Li & Benjamin Legros, 2022. "Appointment-driven queueing systems with non-punctual customers," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 1-56, June.
    17. Sharan Srinivas & A. Ravi Ravindran, 2020. "Designing schedule configuration of a hybrid appointment system for a two-stage outpatient clinic with multiple servers," Health Care Management Science, Springer, vol. 23(3), pages 360-386, September.
    18. Çelik, Batuhan & Gul, Serhat & Çelik, Melih, 2023. "A stochastic programming approach to surgery scheduling under parallel processing principle," Omega, Elsevier, vol. 115(C).
    19. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    20. Avishai Mandelbaum & Petar Momčilović & Nikolaos Trichakis & Sarah Kadish & Ryan Leib & Craig A. Bunnell, 2020. "Data-Driven Appointment-Scheduling Under Uncertainty: The Case of an Infusion Unit in a Cancer Center," Management Science, INFORMS, vol. 66(1), pages 243-270, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:22:y:2019:i:4:d:10.1007_s10729-018-9459-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.