IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v158y2014icp256-266.html
   My bibliography  Save this article

Modeling and scheduling no-wait open shop problems

Author

Listed:
  • Naderi, B.
  • Zandieh, M.

Abstract

This paper studies the problem of scheduling open shops with no intermediate buffer, called no-wait open shops under makespan minimization. No-wait scheduling problems arise in many realistic production environments such as hot metal rolling, the plastic molding, chemical and pharmaceutical, food processing and several other industries. To tackle such problems, we first develop three different mathematical models, mixed integer linear programs, by which we can solve the problem to optimality. Besides the models, we propose novel metaheuristics based on genetic and variable neighborhood search algorithms to solve the large-sized problems in an acceptable computational time. The key point in any scheduling solver is the procedure of encoding and decoding schemes. In this paper, we propose a simple yet effective tailor-made procedure of encoding and decoding schemes for no-wait open shop problems. The operators of the proposed metaheuristics are designed so as to consider the specific encoding scheme of the problem. To evaluate the performance of models and metaheuristics, we conduct two computational experiments. The first includes small-sized instances by which we compare the mathematical models and assess general performance of the proposed metaheuristics. In the second experiment, we further evaluate the potential of metaheuristics on solving some benchmarks in the literature of pure open shops. The results show that the models and metaheuristics are effective to deal with the no-wait open shop problems.

Suggested Citation

  • Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
  • Handle: RePEc:eee:proeco:v:158:y:2014:i:c:p:256-266
    DOI: 10.1016/j.ijpe.2014.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527314001947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2014.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    2. Bräsel, Heidemarie & Herms, André & Mörig, Marc & Tautenhahn, Thomas & Tusch, Jan & Werner, Frank, 2008. "Heuristic constructive algorithms for open shop scheduling to minimize mean flow time," European Journal of Operational Research, Elsevier, vol. 189(3), pages 856-870, September.
    3. Gueret, Christelle & Prins, Christian, 1998. "Classical and new heuristics for the open-shop problem: A computational evaluation," European Journal of Operational Research, Elsevier, vol. 107(2), pages 306-314, June.
    4. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
    5. Pang, King-Wah, 2013. "A genetic algorithm based heuristic for two machine no-wait flowshop scheduling problems with class setup times that minimizes maximum lateness," International Journal of Production Economics, Elsevier, vol. 141(1), pages 127-136.
    6. E F Stafford & F T Tseng & J N D Gupta, 2005. "Comparative evaluation of MILP flowshop models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(1), pages 88-101, January.
    7. Ruiz, Rubén & Maroto, Concepciøn & Alcaraz, Javier, 2006. "Two new robust genetic algorithms for the flowshop scheduling problem," Omega, Elsevier, vol. 34(5), pages 461-476, October.
    8. Alan S. Manne, 1960. "On the Job-Shop Scheduling Problem," Operations Research, INFORMS, vol. 8(2), pages 219-223, April.
    9. Lin, Hung-Tso & Lee, Hong-Tau & Pan, Wen-Jung, 2008. "Heuristics for scheduling in a no-wait open shop with movable dedicated machines," International Journal of Production Economics, Elsevier, vol. 111(2), pages 368-377, February.
    10. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    11. Divsalar, A. & Vansteenwegen, P. & Cattrysse, D., 2013. "A variable neighborhood search method for the orienteering problem with hotel selection," International Journal of Production Economics, Elsevier, vol. 145(1), pages 150-160.
    12. Sartaj Sahni & Yookun Cho, 1979. "Complexity of Scheduling Shops with No Wait in Process," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 448-457, November.
    13. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    14. Bennell, Julia A. & Soon Lee, Lai & Potts, Chris N., 2013. "A genetic algorithm for two-dimensional bin packing with due dates," International Journal of Production Economics, Elsevier, vol. 145(2), pages 547-560.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    2. Wu, Yu-Bin & Wan, Long & Wang, Xiao-Yuan, 2015. "Study on due-window assignment scheduling based on common flow allowance," International Journal of Production Economics, Elsevier, vol. 165(C), pages 155-157.
    3. Mejía, Gonzalo & Yuraszeck, Francisco, 2020. "A self-tuning variable neighborhood search algorithm and an effective decoding scheme for open shop scheduling problems with travel/setup times," European Journal of Operational Research, Elsevier, vol. 285(2), pages 484-496.
    4. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.
    2. Shahaboddin Shamshirband & Mohammad Shojafar & A. Hosseinabadi & Maryam Kardgar & M. Nasir & Rodina Ahmad, 2015. "OSGA: genetic-based open-shop scheduling with consideration of machine maintenance in small and medium enterprises," Annals of Operations Research, Springer, vol. 229(1), pages 743-758, June.
    3. Mejía, Gonzalo & Yuraszeck, Francisco, 2020. "A self-tuning variable neighborhood search algorithm and an effective decoding scheme for open shop scheduling problems with travel/setup times," European Journal of Operational Research, Elsevier, vol. 285(2), pages 484-496.
    4. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    5. Selcuk Colak & Anurag Agarwal, 2005. "Non‐greedy heuristics and augmented neural networks for the open‐shop scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 631-644, October.
    6. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    7. Pan, Quan-Ke & Wang, Ling, 2012. "Effective heuristics for the blocking flowshop scheduling problem with makespan minimization," Omega, Elsevier, vol. 40(2), pages 218-229, April.
    8. Abdennour Azerine & Mourad Boudhar & Djamal Rebaine, 2022. "A two-machine no-wait flow shop problem with two competing agents," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 168-199, January.
    9. Guillermo Campos Ciro & Frédéric Dugardin & Farouk Yalaoui & Russell Kelly, 2016. "Open shop scheduling problem with a multi-skills resource constraint: a genetic algorithm and an ant colony optimisation approach," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4854-4881, August.
    10. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    11. Gueret, Christelle & Jussien, Narendra & Prins, Christian, 2000. "Using intelligent backtracking to improve branch-and-bound methods: An application to Open-Shop problems," European Journal of Operational Research, Elsevier, vol. 127(2), pages 344-354, December.
    12. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    13. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    14. Lin, Hung-Tso & Lee, Hong-Tau & Pan, Wen-Jung, 2008. "Heuristics for scheduling in a no-wait open shop with movable dedicated machines," International Journal of Production Economics, Elsevier, vol. 111(2), pages 368-377, February.
    15. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    16. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    17. Zeynep Adak & Mahmure Övül Arıoğlu Akan & Serol Bulkan, 0. "Multiprocessor open shop problem: literature review and future directions," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-23.
    18. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    19. Lin, Shih-Wei & Ying, Kuo-Ching, 2013. "Minimizing makespan in a blocking flowshop using a revised artificial immune system algorithm," Omega, Elsevier, vol. 41(2), pages 383-389.
    20. Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:158:y:2014:i:c:p:256-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.