IDEAS home Printed from https://ideas.repec.org/a/cys/ecocyb/v50y2016i3p229-246.html
   My bibliography  Save this article

The Genetic Approach Of Marketing Research

Author

Listed:
  • Adrian MICU

    (”Dunarea de Jos” University of Galati)

  • Angela Eliza MICU

    (Ovidius University of Constanta)

  • Kamer AIVAZ

    (Ovidius University of Constanta)

  • Alexandru CAPATINA

    (”Dunarea de Jos” University of Galati)

Abstract

This paper highlights the original contribution of genetic algorithms to marketing research techniques, by means of the design and development of a marketing decision making tool based on aggregated mathematic models that lead to the maximizing of a company’s profit or market share by using genetic algorithms. The mathematical pattern developed encompasses both the function of the demand reaction to different marketing variables and the function of market global demand. Moreover, the genetic algorithms implemented into the pattern provide suitable solutions for optimizing the marketing functions. A software was also designed and implemented in order to configure the genetic algorithm for discovering the most effective decisions, taking into account the restrictions related to the marketing variables embedded into the mathematical pattern.

Suggested Citation

  • Adrian MICU & Angela Eliza MICU & Kamer AIVAZ & Alexandru CAPATINA, 2016. "The Genetic Approach Of Marketing Research," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 229-246.
  • Handle: RePEc:cys:ecocyb:v:50:y:2016:i:3:p:229-246
    as

    Download full text from publisher

    File URL: ftp://www.eadr.ro/RePEc/cys/ecocyb_pdf/ecocyb3_2016p229-246.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arifovic, Jasmina, 1994. "Genetic algorithm learning and the cobweb model," Journal of Economic Dynamics and Control, Elsevier, vol. 18(1), pages 3-28, January.
    2. Zhang, Rui & Chang, Pei-Chann & Wu, Cheng, 2013. "A hybrid genetic algorithm for the job shop scheduling problem with practical considerations for manufacturing costs: Investigations motivated by vehicle production," International Journal of Production Economics, Elsevier, vol. 145(1), pages 38-52.
    3. Min, Hokey & Jeung Ko, Hyun & Seong Ko, Chang, 2006. "A genetic algorithm approach to developing the multi-echelon reverse logistics network for product returns," Omega, Elsevier, vol. 34(1), pages 56-69, January.
    4. Feil, Jan-Henning & Musshoff, Oliver, 2013. "Modelling investment and disinvestment decisions under competition, uncertainty and different market interventions," Economic Modelling, Elsevier, vol. 35(C), pages 443-452.
    5. Chi, Hoi-Ming & Ersoy, Okan K. & Moskowitz, Herbert & Ward, Jim, 2007. "Modeling and optimizing a vendor managed replenishment system using machine learning and genetic algorithms," European Journal of Operational Research, Elsevier, vol. 180(1), pages 174-193, July.
    6. Gruca, Thomas S. & Klemz, Bruce R., 2003. "Optimal new product positioning: A genetic algorithm approach," European Journal of Operational Research, Elsevier, vol. 146(3), pages 621-633, May.
    7. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feil, Jan-Henning & Mußhoff, Oliver, 2016. "Analysing investment and disinvestment decisions under uncertainty, firm heterogeneity and tradable output permits," DARE Discussion Papers 1602, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
    2. Meissner, Thomas & Rostam-Afschar, Davud, 2017. "Learning Ricardian Equivalence," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 273-288.
    3. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    4. Gomes, Orlando, 2009. "Stability under learning: The endogenous growth problem," Economic Modelling, Elsevier, vol. 26(5), pages 807-816, September.
    5. Feil, Jan-Henning & Musshoff, Oliver, 2013. "Investment, disinvestment and policy impact analysis in the dairy sector: a real options approach," Structural Change in Agriculture/Strukturwandel im Agrarsektor (SiAg) Working Papers 159229, Humboldt University Berlin, Department of Agricultural Economics.
    6. Bullard, James & Duffy, John, 1999. "Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 13(1), pages 41-60, February.
    7. Zhanwei Tian & Guoqing Zhang, 2021. "Multi-echelon fulfillment warehouse rent and production allocation for online direct selling," Annals of Operations Research, Springer, vol. 304(1), pages 427-451, September.
    8. Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
    9. Kellermann, Konrad & Balmann, Alfons, 2006. "How Smart Should Farms Be Modeled? Behavioral Foundation of Bidding Strategies in Agent-Based Land Market Models," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25446, International Association of Agricultural Economists.
    10. Brenner, Thomas, 2006. "Agent Learning Representation: Advice on Modelling Economic Learning," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 18, pages 895-947, Elsevier.
    11. Michael Maschek, 2010. "Intelligent Mutation Rate Control in an Economic Application of Genetic Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 35(1), pages 25-49, January.
    12. Meisam Nasrollahi & Jafar Razmi, 2021. "A mathematical model for designing an integrated pharmaceutical supply chain with maximum expected coverage under uncertainty," Operational Research, Springer, vol. 21(1), pages 525-552, March.
    13. Jie-Shin Lin & Chris Birchenhall, 2000. "Learning And Adaptive Artificial Agents: An Analysis Of Evolutionary Economic Models," Computing in Economics and Finance 2000 327, Society for Computational Economics.
    14. Marco Casari, 2002. "Can genetic algorithms explain experimental anomalies? An application to common property resources," UFAE and IAE Working Papers 542.02, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    15. Safarzynska, Karolina & van den Bergh, Jeroen C.J.M., 2011. "Beyond replicator dynamics: Innovation-selection dynamics and optimal diversity," Journal of Economic Behavior & Organization, Elsevier, vol. 78(3), pages 229-245, May.
    16. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
    17. repec:zbw:iamodp:109915 is not listed on IDEAS
    18. Casari, Marco, 2008. "Markets in equilibrium with firms out of equilibrium: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 65(2), pages 261-276, February.
    19. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
    20. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2009. "More hedging instruments may destabilize markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1912-1928, November.
    21. Thomas Riechman, 2000. "A Model Of Boundedly Rational Consumer Choice," Computing in Economics and Finance 2000 321, Society for Computational Economics.

    More about this item

    Keywords

    genetic algorithm; marketing mix; decision making; market reaction function; promotional expenses.;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cys:ecocyb:v:50:y:2016:i:3:p:229-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/feasero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.