IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v117y2009i1p219-228.html
   My bibliography  Save this article

Probabilistically constrained models for efficiency and dominance in DEA

Author

Listed:
  • Bruni, M.E.
  • Conforti, D.
  • Beraldi, P.
  • Tundis, E.

Abstract

This paper proposes a stochastic model for data envelopment analysis (DEA), based on the theory of joint probabilistic constraints, which can be used with general multivariate distribution functions. The key assumption is that the random variables representative of the uncertain data follow a discrete distribution or that a discrete approximation of continuous distribution is available. Under this assumption, mixed integer linear models are formulated to tackle, rather originally, dependencies among DMUs inputs, outputs and inputs-outputs through the theory of joint probabilistic constraints. The features of the model are illustrated through an application for the performance evaluation of screening units.

Suggested Citation

  • Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
  • Handle: RePEc:eee:proeco:v:117:y:2009:i:1:p:219-228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(08)00357-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhimin Huang & Susan Li, 2001. "Stochastic DEA Models With Different Types of Input-Output Disturbances," Journal of Productivity Analysis, Springer, vol. 15(2), pages 95-113, March.
    2. Huang, Zhimin & Li, Susan X., 1996. "Dominance stochastic models in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 95(2), pages 390-403, December.
    3. Sueyoshi, Toshiyuki, 2000. "Stochastic DEA for restructure strategy: an application to a Japanese petroleum company," Omega, Elsevier, vol. 28(4), pages 385-398, August.
    4. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    5. Johnston, Katharine & Gerard, Karen, 2001. "Assessing efficiency in the UK breast screening programme: does size of screening unit make a difference?," Health Policy, Elsevier, vol. 56(1), pages 21-32, April.
    6. Bruce L. Miller & Harvey M. Wagner, 1965. "Chance Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 13(6), pages 930-945, December.
    7. William Cooper & Zhimin Huang & Vedran Lelas & Susan Li & Ole Olesen, 1998. "Chance Constrained Programming Formulations for Stochastic Characterizations of Efficiency and Dominance in DEA," Journal of Productivity Analysis, Springer, vol. 9(1), pages 53-79, January.
    8. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    9. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    10. A. Charnes & W. W. Cooper & E. Rhodes, 1981. "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through," Management Science, INFORMS, vol. 27(6), pages 668-697, June.
    11. Talluri, Srinivas & Narasimhan, Ram & Nair, Anand, 2006. "Vendor performance with supply risk: A chance-constrained DEA approach," International Journal of Production Economics, Elsevier, vol. 100(2), pages 212-222, April.
    12. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    13. Camanho, A. S. & Dyson, R. G., 2005. "Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments," European Journal of Operational Research, Elsevier, vol. 161(2), pages 432-446, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Mitropoulos & Alexandros Mitropoulos, 2023. "Evaluating efficiency and technology gaps of the national systems of entrepreneurship using stochastic DEA and club convergence," Operational Research, Springer, vol. 23(1), pages 1-28, March.
    2. Jianfeng Lu & Qiang Yang, 2022. "Location Optimization of Emergency Station for Dangerous Goods Accidents Considering Risk," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    3. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    4. Mitropoulos, Panagiotis & Talias, Μichael A. & Mitropoulos, Ioannis, 2015. "Combining stochastic DEA with Bayesian analysis to obtain statistical properties of the efficiency scores: An application to Greek public hospitals," European Journal of Operational Research, Elsevier, vol. 243(1), pages 302-311.
    5. Rashed Khanjani Shiraz & Madjid Tavana & Hirofumi Fukuyama, 2021. "A joint chance-constrained data envelopment analysis model with random output data," Operational Research, Springer, vol. 21(2), pages 1255-1277, June.
    6. Quirós Romero, Cipriano & Rodríguez Rodríguez, Diego, 2010. "E-commerce and efficiency at the firm level," International Journal of Production Economics, Elsevier, vol. 126(2), pages 299-305, August.
    7. Gianpaolo Iazzolino & Maria Elena Bruni & Patrizia Beraldi, 2013. "Using DEA and financial ratings for credit risk evaluation: an empirical analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 20(14), pages 1310-1317, September.
    8. Ali Ebrahimnejad & Madjid Tavana & Seyed Hadi Nasseri & Omid Gholami, 2019. "A New Method for Solving Dual DEA Problems with Fuzzy Stochastic Data," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 147-170, January.
    9. Jinpeng Liu & Yun Long & Xiaohua Song, 2017. "A Study on the Conduction Mechanism and Evaluation of the Comprehensive Efficiency of Photovoltaic Power Generation in China," Energies, MDPI, vol. 10(5), pages 1-22, May.
    10. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    11. Lee, Chia-Yen & Johnson, Andrew L., 2014. "Proactive data envelopment analysis: Effective production and capacity expansion in stochastic environments," European Journal of Operational Research, Elsevier, vol. 232(3), pages 537-548.
    12. Wang, Ying-Ming & Chin, Kwai-Sang, 2010. "Some alternative models for DEA cross-efficiency evaluation," International Journal of Production Economics, Elsevier, vol. 128(1), pages 332-338, November.
    13. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
    14. Angus Jeang, 2019. "Robust DEA methodology via computer model for conceptual design under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1221-1245, March.
    15. Ruiling Sun & Yi Zhou & Jie Wu & Zaiwu Gong, 2019. "Influencing Factors of PM 2.5 Pollution: Disaster Points of Meteorological Factors," IJERPH, MDPI, vol. 16(20), pages 1-31, October.
    16. Wai‐Peng Wong & Qiang Deng & Ming-Lang Tseng & Loo‐Hay Lee & Chee‐Wooi Hooy, 2014. "A Stochastic Setting To Bank Financial Performance For Refining Efficiency Estimates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 225-245, October.
    17. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    18. Kao, Chiang & Liu, Shiang-Tai, 2019. "Stochastic efficiency measures for production units with correlated data," European Journal of Operational Research, Elsevier, vol. 273(1), pages 278-287.
    19. Wei, Guiwu & Chen, Jian & Wang, Jiamin, 2014. "Stochastic efficiency analysis with a reliability consideration," Omega, Elsevier, vol. 48(C), pages 1-9.
    20. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    21. Rashed Khanjani Shiraz & Adel Hatami-Marbini & Ali Emrouznejad & Hirofumi Fukuyama, 2020. "Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs," Operational Research, Springer, vol. 20(3), pages 1863-1898, September.
    22. Davtalab-Olyaie, Mostafa & Asgharian, Masoud & Nia, Vahid Partovi, 2019. "Stochastic ranking and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 214(C), pages 125-138.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashed Khanjani Shiraz & Adel Hatami-Marbini & Ali Emrouznejad & Hirofumi Fukuyama, 2020. "Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs," Operational Research, Springer, vol. 20(3), pages 1863-1898, September.
    2. Alireza Amirteimoori & Biresh K. Sahoo & Saber Mehdizadeh, 2023. "Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    3. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    4. Rashed Khanjani Shiraz & Madjid Tavana & Hirofumi Fukuyama, 2021. "A joint chance-constrained data envelopment analysis model with random output data," Operational Research, Springer, vol. 21(2), pages 1255-1277, June.
    5. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    6. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    7. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    8. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
    9. Nathaniel D. Bastian & Tahir Ekin & Hyojung Kang & Paul M. Griffin & Lawrence V. Fulton & Benjamin C. Grannan, 2017. "Stochastic multi-objective auto-optimization for resource allocation decision-making in fixed-input health systems," Health Care Management Science, Springer, vol. 20(2), pages 246-264, June.
    10. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.
    11. Wei, Guiwu & Chen, Jian & Wang, Jiamin, 2014. "Stochastic efficiency analysis with a reliability consideration," Omega, Elsevier, vol. 48(C), pages 1-9.
    12. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    13. Li, Susan X., 1998. "Stochastic models and variable returns to scales in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 104(3), pages 532-548, February.
    14. Desai, Anand & Ratick, Samuel J. & Schinnar, Arie P., 2005. "Data envelopment analysis with stochastic variations in data," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 147-164, June.
    15. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    16. Mohammad Izadikhah & Elnaz Azadi & Majid Azadi & Reza Farzipoor Saen & Mehdi Toloo, 2022. "Developing a new chance constrained NDEA model to measure performance of sustainable supply chains," Annals of Operations Research, Springer, vol. 316(2), pages 1319-1347, September.
    17. Panagiotis Mitropoulos & Panagiotis D. Zervopoulos & Ioannis Mitropoulos, 2020. "Measuring performance in the presence of noisy data with targeted desirable levels: evidence from healthcare units," Annals of Operations Research, Springer, vol. 294(1), pages 537-566, November.
    18. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    19. Bolós, V.J. & Benítez, R. & Coll-Serrano, V., 2024. "Chance constrained directional models in stochastic data envelopment analysis," Operations Research Perspectives, Elsevier, vol. 12(C).
    20. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:117:y:2009:i:1:p:219-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.