IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v294y2020i1d10.1007_s10479-019-03280-5.html
   My bibliography  Save this article

Measuring performance in the presence of noisy data with targeted desirable levels: evidence from healthcare units

Author

Listed:
  • Panagiotis Mitropoulos

    (University of Patras)

  • Panagiotis D. Zervopoulos

    (University of Sharjah)

  • Ioannis Mitropoulos

    (University of Patras)

Abstract

Noise in data is not uncommon in real-world cases, although it is commonly omitted from performance measurement studies. In this paper, we develop a stochastic DEA-based methodology to measure performance when the endogenous (e.g. efficiency) and exogenous variables (e.g. perspectives of patients’ satisfaction), which are incorporated in the assessment, are inversely related. This methodology identifies benchmark units that are not only efficient but are also assigned scores for their exogenous variables, which are at least equal to user-defined critical values. We apply the performance measurement methodology to the 14 largest Cypriot health centers. The advantages of our methodology are pointed out through comparative analysis with alternative stochastic and non-stochastic DEA approaches.

Suggested Citation

  • Panagiotis Mitropoulos & Panagiotis D. Zervopoulos & Ioannis Mitropoulos, 2020. "Measuring performance in the presence of noisy data with targeted desirable levels: evidence from healthcare units," Annals of Operations Research, Springer, vol. 294(1), pages 537-566, November.
  • Handle: RePEc:spr:annopr:v:294:y:2020:i:1:d:10.1007_s10479-019-03280-5
    DOI: 10.1007/s10479-019-03280-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03280-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03280-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wagner, Janet M. & Shimshak, Daniel G. & Novak, Michael A., 2003. "Advances in physician profiling: the use of DEA," Socio-Economic Planning Sciences, Elsevier, vol. 37(2), pages 141-163, June.
    2. Cheng, Gang & Zervopoulos, Panagiotis D., 2014. "Estimating the technical efficiency of health care systems: A cross-country comparison using the directional distance function," European Journal of Operational Research, Elsevier, vol. 238(3), pages 899-910.
    3. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    4. Mitropoulos, Panagiotis & Talias, Μichael A. & Mitropoulos, Ioannis, 2015. "Combining stochastic DEA with Bayesian analysis to obtain statistical properties of the efficiency scores: An application to Greek public hospitals," European Journal of Operational Research, Elsevier, vol. 243(1), pages 302-311.
    5. Ole Olesen & Niels Petersen, 2002. "The Use of Data Envelopment Analysis with Probabilistic Assurance Regions for Measuring Hospital Efficiency," Journal of Productivity Analysis, Springer, vol. 17(1), pages 83-109, January.
    6. E. Grigoroudis & E. Tsitsiridi & C. Zopounidis, 2013. "Linking customer satisfaction, employee appraisal, and business performance: an evaluation methodology in the banking sector," Annals of Operations Research, Springer, vol. 205(1), pages 5-27, May.
    7. Cavalieri, Marina & Gitto, Lara & Guccio, Calogero, 2013. "Reimbursement systems and quality of hospital care: An empirical analysis for Italy," Health Policy, Elsevier, vol. 111(3), pages 273-289.
    8. Zhimin Huang & Susan Li, 2001. "Stochastic DEA Models With Different Types of Input-Output Disturbances," Journal of Productivity Analysis, Springer, vol. 15(2), pages 95-113, March.
    9. Boussofiane, A. & Dyson, R. G. & Thanassoulis, E., 1991. "Applied data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 52(1), pages 1-15, May.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Banker, Rajiv D. & Chang, Hsihui, 2006. "The super-efficiency procedure for outlier identification, not for ranking efficient units," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1311-1320, December.
    12. Guilan Kong & Lili Jiang & Xiaofeng Yin & Tianbing Wang & Dong-Ling Xu & Jian-Bo Yang & Yonghua Hu, 2018. "Combining principal component analysis and the evidential reasoning approach for healthcare quality assessment," Annals of Operations Research, Springer, vol. 271(2), pages 679-699, December.
    13. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    14. Mette Asmild & Bruce Hollingsworth & Stephen Birch, 2013. "The scale of hospital production in different settings: one size does not fit all," Journal of Productivity Analysis, Springer, vol. 40(2), pages 197-206, October.
    15. S C Ray, 2008. "The directional distance function and measurement of super-efficiency: an application to airlines data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 788-797, June.
    16. Olesen, Ole B. & Petersen, Niels Christian, 2016. "Stochastic Data Envelopment Analysis—A review," European Journal of Operational Research, Elsevier, vol. 251(1), pages 2-21.
    17. Rajiv D. Banker & Hsihui Chang & Zhiqiang Zheng, 2017. "On the use of super-efficiency procedures for ranking efficient units and identifying outliers," Annals of Operations Research, Springer, vol. 250(1), pages 21-35, March.
    18. Tsionas, Efthymios G. & Papadakis, Emmanuel N., 2010. "A Bayesian approach to statistical inference in stochastic DEA," Omega, Elsevier, vol. 38(5), pages 309-314, October.
    19. Panagiotis Mitropoulos & Nikolaos Mastrogiannis & Ioannis Mitropoulos, 2014. "Seeking interactions between patient satisfaction and efficiency in primary healthcare: cluster and DEA analysis," International Journal of Multicriteria Decision Making, Inderscience Enterprises Ltd, vol. 4(3), pages 234-251.
    20. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    21. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    22. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    23. R G Dyson & E A Shale, 2010. "Data envelopment analysis, operational research and uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 25-34, January.
    24. Tser-Yieth Chen, 2002. "A comparison of chance-constrained DEA and stochastic frontier analysis: bank efficiency in Taiwan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 492-500, May.
    25. Talluri, Srinivas & Narasimhan, Ram & Nair, Anand, 2006. "Vendor performance with supply risk: A chance-constrained DEA approach," International Journal of Production Economics, Elsevier, vol. 100(2), pages 212-222, April.
    26. Li, Susan X., 1998. "Stochastic models and variable returns to scales in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 104(3), pages 532-548, February.
    27. Mehmet Ceyhan & James Benneyan, 2014. "Handling estimated proportions in public sector data envelopment analysis," Annals of Operations Research, Springer, vol. 221(1), pages 107-132, October.
    28. Zervopoulos, Panagiotis D. & Brisimi, Theodora S. & Emrouznejad, Ali & Cheng, Gang, 2016. "Performance measurement with multiple interrelated variables and threshold target levels: Evidence from retail firms in the US," European Journal of Operational Research, Elsevier, vol. 250(1), pages 262-272.
    29. Shimshak, Daniel G. & Lenard, Melanie L. & Klimberg, Ronald K., 2009. "Incorporating quality into data envelopment analysis of nursing home performance: A case study," Omega, Elsevier, vol. 37(3), pages 672-685, June.
    30. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Mitropoulos & Alexandros Mitropoulos, 2023. "Evaluating efficiency and technology gaps of the national systems of entrepreneurship using stochastic DEA and club convergence," Operational Research, Springer, vol. 23(1), pages 1-28, March.
    2. Mohit Goswami & Yash Daultani & Sanjoy Kumar Paul & Saurabh Pratap, 2023. "A framework for the estimation of treatment costs of cardiovascular conditions in the presence of disease transition," Annals of Operations Research, Springer, vol. 328(1), pages 577-616, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zervopoulos, Panagiotis & Emrouznejad, Ali & Sklavos, Sokratis, 2019. "A Bayesian approach for correcting bias of data envelopment analysis estimators," MPRA Paper 91886, University Library of Munich, Germany.
    2. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    3. Panagiotis Mitropoulos & Alexandros Mitropoulos, 2023. "Evaluating efficiency and technology gaps of the national systems of entrepreneurship using stochastic DEA and club convergence," Operational Research, Springer, vol. 23(1), pages 1-28, March.
    4. Alireza Amirteimoori & Biresh K. Sahoo & Saber Mehdizadeh, 2023. "Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    5. Mitropoulos, Panagiotis & Talias, Μichael A. & Mitropoulos, Ioannis, 2015. "Combining stochastic DEA with Bayesian analysis to obtain statistical properties of the efficiency scores: An application to Greek public hospitals," European Journal of Operational Research, Elsevier, vol. 243(1), pages 302-311.
    6. Nathaniel D. Bastian & Tahir Ekin & Hyojung Kang & Paul M. Griffin & Lawrence V. Fulton & Benjamin C. Grannan, 2017. "Stochastic multi-objective auto-optimization for resource allocation decision-making in fixed-input health systems," Health Care Management Science, Springer, vol. 20(2), pages 246-264, June.
    7. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    8. Udhayakumar, A. & Charles, V. & Kumar, Mukesh, 2011. "Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems," Omega, Elsevier, vol. 39(4), pages 387-397, August.
    9. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    10. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
    11. Khodadadipour, M. & Hadi-Vencheh, A. & Behzadi, M.H. & Rostamy-malkhalifeh, M., 2021. "Undesirable factors in stochastic DEA cross-efficiency evaluation: An application to thermal power plant energy efficiency," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 613-628.
    12. García-Alonso, Carlos R. & Salvador-Carulla, Luis & Fernández-Rodríguez, Vicente, 2015. "Evaluation of system efficiency using the Monte Carlo DEA: The case of small health areasAuthor-Name: Torres-Jiménez, Mercedes," European Journal of Operational Research, Elsevier, vol. 242(2), pages 525-535.
    13. Rashed Khanjani Shiraz & Madjid Tavana & Hirofumi Fukuyama, 2021. "A joint chance-constrained data envelopment analysis model with random output data," Operational Research, Springer, vol. 21(2), pages 1255-1277, June.
    14. Ali Ebrahimnejad & Madjid Tavana & Seyed Hadi Nasseri & Omid Gholami, 2019. "A New Method for Solving Dual DEA Problems with Fuzzy Stochastic Data," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 147-170, January.
    15. Mohammad Izadikhah & Elnaz Azadi & Majid Azadi & Reza Farzipoor Saen & Mehdi Toloo, 2022. "Developing a new chance constrained NDEA model to measure performance of sustainable supply chains," Annals of Operations Research, Springer, vol. 316(2), pages 1319-1347, September.
    16. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    17. Wu, Desheng (Dash) & Lee, Chi-Guhn, 2010. "Stochastic DEA with ordinal data applied to a multi-attribute pricing problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1679-1688, December.
    18. Rashed Khanjani Shiraz & Adel Hatami-Marbini & Ali Emrouznejad & Hirofumi Fukuyama, 2020. "Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs," Operational Research, Springer, vol. 20(3), pages 1863-1898, September.
    19. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    20. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:294:y:2020:i:1:d:10.1007_s10479-019-03280-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.