IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p723-d99162.html
   My bibliography  Save this article

A Study on the Conduction Mechanism and Evaluation of the Comprehensive Efficiency of Photovoltaic Power Generation in China

Author

Listed:
  • Jinpeng Liu

    (School of Economic and Management, North China Electric Power University, Changping District, Beijing 102206, China)

  • Yun Long

    (School of Economic and Management, North China Electric Power University, Changping District, Beijing 102206, China)

  • Xiaohua Song

    (School of Economic and Management, North China Electric Power University, Changping District, Beijing 102206, China)

Abstract

In the context of the global potential energy crisis and aggravating regional environmental pollution, Chinese photovoltaic power generation still faces the key problems of sustainable development, even given its favorable background in large-scale exploitation. Scientific evaluation of the comprehensive efficiency of photovoltaic power generation is of great significance because it will improve investment decision-making and enhance management level, evaluate the development conditions of photovoltaic power generation and then promote sustainable development capability. The concept of “comprehensive efficiency” is proposed in this paper on the basis of the resource development of solar energy and exploitation of photovoltaic power generation. A system dynamics model is used to study the conduction mechanism of the comprehensive efficiency of photovoltaic power generation. This paper collects data from 2005 to 2015 as research models, establishes the evaluation model of the comprehensive efficiency of photovoltaic power generation and conducts empirical analysis based on a super-efficient data envelopment analysis (SE-DEA) model. With the evaluation results, this paper puts forward political suggestions as to the optimization of the comprehensive efficiency of photovoltaic power generation. The research results may provide policy-oriented references on the sustainable development of photovoltaic power generation and give theoretical guidance on the scientific evaluation and diagnosis of photovoltaic power generation efficiency.

Suggested Citation

  • Jinpeng Liu & Yun Long & Xiaohua Song, 2017. "A Study on the Conduction Mechanism and Evaluation of the Comprehensive Efficiency of Photovoltaic Power Generation in China," Energies, MDPI, vol. 10(5), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:723-:d:99162
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Avkiran, Necmi K., 2011. "Association of DEA super-efficiency estimates with financial ratios: Investigating the case for Chinese banks," Omega, Elsevier, vol. 39(3), pages 323-334, June.
    2. Rohankar, Nishant & Jain, A.K. & Nangia, Om P. & Dwivedi, Prasoom, 2016. "A study of existing solar power policy framework in India for viability of the solar projects perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 510-518.
    3. Qunli Wu & Chenyang Peng, 2016. "Comprehensive Benefit Evaluation of the Power Distribution Network Planning Project Based on Improved IAHP and Multi-Level Extension Assessment Method," Sustainability, MDPI, vol. 8(8), pages 1-18, August.
    4. Xiao, Chaofeng & Luo, Huilong & Tang, Runsheng & Zhong, Hao, 2004. "Solar thermal utilization in China," Renewable Energy, Elsevier, vol. 29(9), pages 1549-1556.
    5. Ma, Linwei & Liu, Pei & Fu, Feng & Li, Zheng & Ni, Weidou, 2011. "Integrated energy strategy for the sustainable development of China," Energy, Elsevier, vol. 36(2), pages 1143-1154.
    6. Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
    7. Patrik Thollander & Jenny Palm, 2015. "Industrial Energy Management Decision Making for Improved Energy Efficiency—Strategic System Perspectives and Situated Action in Combination," Energies, MDPI, vol. 8(6), pages 1-10, June.
    8. Kumar Sahu, Bikash, 2015. "A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 621-634.
    9. Zhi, Qiang & Sun, Honghang & Li, Yanxi & Xu, Yurui & Su, Jun, 2014. "China’s solar photovoltaic policy: An analysis based on policy instruments," Applied Energy, Elsevier, vol. 129(C), pages 308-319.
    10. Huang, Chao & Dai, Chong & Guo, Miao, 2015. "A hybrid approach using two-level DEA for financial failure prediction and integrated SE-DEA and GCA for indicators selection," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 431-441.
    11. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    12. Alessandra Curreli & Glòria Serra-Coch & Antonio Isalgue & Isabel Crespo & Helena Coch, 2016. "Solar Energy as a Form Giver for Future Cities," Energies, MDPI, vol. 9(7), pages 1-11, July.
    13. Algieri, Bernardina & Aquino, Antonio & Succurro, Marianna, 2011. "Going “green”: trade specialisation dynamics in the solar photovoltaic sector," Energy Policy, Elsevier, vol. 39(11), pages 7275-7283.
    14. Tiba, Chigueru & de A. Beltrão, Ricardo E., 2012. "Siting PV plant focusing on the effect of local climate variables on electric energy production – Case study for Araripina and Recife," Renewable Energy, Elsevier, vol. 48(C), pages 309-317.
    15. Almonacid, F. & Rus, C. & Pérez, P.J. & Hontoria, L., 2009. "Estimation of the energy of a PV generator using artificial neural network," Renewable Energy, Elsevier, vol. 34(12), pages 2743-2750.
    16. Hasan, M. Arif & Sumathy, K., 2010. "Photovoltaic thermal module concepts and their performance analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1845-1859, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huaimo You & Hong Fang & Xu Wang & Siran Fang, 2018. "Environmental Efficiency of Photovoltaic Power Plants in China—A Comparative Study of Different Economic Zones and Plant Types," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    2. Nubia Ilia Ponce de León Puig & Leonardo Acho & José Rodellar, 2018. "Design and Experimental Implementation of a Hysteresis Algorithm to Optimize the Maximum Power Point Extracted from a Photovoltaic System," Energies, MDPI, vol. 11(7), pages 1-24, July.
    3. Wang, Zihan & Li, Jiaxin & Liu, Jing & Shuai, Chuanmin, 2020. "Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? ——A DEA and GRA analysis of different projects in rural China," Energy Policy, Elsevier, vol. 137(C).
    4. Li, Wanying & Ji, Zhengsen & Dong, Fugui & Yang, Yugui, 2024. "Evaluation of provincial renewable energy generation efficiency and spatio-temporal heterogeneity of influencing factors in China," Renewable Energy, Elsevier, vol. 226(C).
    5. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    6. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    7. Fei Mei & Yi Pan & Kedong Zhu & Jianyong Zheng, 2018. "A Hybrid Online Forecasting Model for Ultrashort-Term Photovoltaic Power Generation," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    8. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    9. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    10. Liu, Jicheng & Lu, Yunyuan, 2023. "A task matching model of photovoltaic storage system under the energy blockchain environment - based on GA-CLOUD-GS algorithm," Energy, Elsevier, vol. 283(C).
    11. Jin-Peng Liu & Qian-Ru Yang & Lin He, 2017. "Total-Factor Energy Efficiency (TFEE) Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques," Energies, MDPI, vol. 10(7), pages 1-14, July.
    12. Gabriele C. Eder & Yuliya Voronko & Christina Hirschl & Rita Ebner & Gusztáv Újvári & Wolfgang Mühleisen, 2018. "Non-Destructive Failure Detection and Visualization of Artificially and Naturally Aged PV Modules," Energies, MDPI, vol. 11(5), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohua Song & Yun Long & Zhongfu Tan & Xubei Zhang & Leming Li, 2016. "The Optimization of Distributed Photovoltaic Comprehensive Efficiency Based on the Construction of Regional Integrated Energy Management System in China," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    2. Gianpaolo Iazzolino & Maria Elena Bruni & Patrizia Beraldi, 2013. "Using DEA and financial ratings for credit risk evaluation: an empirical analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 20(14), pages 1310-1317, September.
    3. Lee, Minhyun & Hong, Taehoon & Yoo, Hyunji & Koo, Choongwan & Kim, Jimin & Jeong, Kwangbok & Jeong, Jaewook & Ji, Changyoon, 2017. "Establishment of a base price for the Solar Renewable Energy Credit (SREC) from the perspective of residents and state governments in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1066-1080.
    4. Nguyen, Ly & Kinnucan, Henry W., 2019. "The US solar panel anti-dumping duties versus uniform tariff," Energy Policy, Elsevier, vol. 127(C), pages 523-532.
    5. Wu, Qiyan & Zhang, Xiaoling & Sun, Jingwei & Ma, Zhifei & Zhou, Chen, 2016. "Locked post-fossil consumption of urban decentralized solar photovoltaic energy: A case study of an on-grid photovoltaic power supply community in Nanjing, China," Applied Energy, Elsevier, vol. 172(C), pages 1-11.
    6. Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2017. "Investigation of feasibility study of solar farms deployment using hybrid AHP-TOPSIS analysis: Case study of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 496-511.
    7. Zhang, Lingxian & Wang, Jieqiong & Wen, Haojie & Fu, Zetian & Li, Xinxing, 2016. "Operating performance, industry agglomeration and its spatial characteristics of Chinese photovoltaic industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 373-386.
    8. Avkiran, Necmi Kemal, 2015. "An illustration of dynamic network DEA in commercial banking including robustness tests," Omega, Elsevier, vol. 55(C), pages 141-150.
    9. Necmi Kemal Avkiran, 2017. "An illustration of multiple-stakeholder perspective using a survey across Australia, China and Japan," Annals of Operations Research, Springer, vol. 248(1), pages 93-121, January.
    10. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2016. "Diversity in solar photovoltaic energy: Implications for innovation and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 331-340.
    11. Jorge Antunes & Abdollah Hadi-Vencheh & Ali Jamshidi & Yong Tan & Peter Wanke, 2022. "Bank efficiency estimation in China: DEA-RENNA approach," Annals of Operations Research, Springer, vol. 315(2), pages 1373-1398, August.
    12. Barros, Carlos Pestana & Managi, Shunsuke & Matousek, Roman, 2012. "The technical efficiency of the Japanese banks: Non-radial directional performance measurement with undesirable output," Omega, Elsevier, vol. 40(1), pages 1-8, January.
    13. Sahoo, Biresh K. & Tone, Kaoru, 2013. "Non-parametric measurement of economies of scale and scope in non-competitive environment with price uncertainty," Omega, Elsevier, vol. 41(1), pages 97-111.
    14. Coffman, Makena & Wee, Sherilyn & Bonham, Carl & Salim, Germaine, 2016. "A policy analysis of Hawaii's solar tax credit," Renewable Energy, Elsevier, vol. 85(C), pages 1036-1043.
    15. Wu, Yueh-Cheng & Wei Kiong Ting, Irene & Lu, Wen-Min & Nourani, Mohammad & Kweh, Qian Long, 2016. "The impact of earnings management on the performance of ASEAN banks," Economic Modelling, Elsevier, vol. 53(C), pages 156-165.
    16. Zha, Yong & Liang, Nannan & Wu, Maoguo & Bian, Yiwen, 2016. "Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach," Omega, Elsevier, vol. 60(C), pages 60-72.
    17. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    18. Wei, Jian & Zhou, Yuqi & Wang, Yuan & Miao, Zhuang & Guo, Yupeng & Zhang, Hao & Li, Xueting & Wang, Zhipeng & Shi, Zongmo, 2023. "A large-sized thermoelectric module composed of cement-based composite blocks for pavement energy harvesting and surface temperature reducing," Energy, Elsevier, vol. 265(C).
    19. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    20. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:723-:d:99162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.