IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6088-d817506.html
   My bibliography  Save this article

Location Optimization of Emergency Station for Dangerous Goods Accidents Considering Risk

Author

Listed:
  • Jianfeng Lu

    (Business Administration College, Nanchang Institute of Technology, Nanchang 330108, China)

  • Qiang Yang

    (School of Economics and Management, Chongqing Jiaotong University, Chongqing 400074, China)

Abstract

Emergency station is very important for emergency rescue work in hazardous chemical accidents. In order to ensure the efficiency of emergency rescue work, the setting characteristics and objectives of the emergency station should be comprehensively considered. A bi-level programming model of emergency station location for hazardous chemical accidents is established in this paper. The optimization objectives of the model include the minimum risk of emergency station location, the minimum construction and operation cost, the minimum weighted path distance, and the highest coverage level. Based on the NSGA-II algorithm, the model solving technology is designed and applied to the case analysis. The obtained results showed that the efficiency of emergency rescue is continuously improving with the increase in the number of emergency stations.

Suggested Citation

  • Jianfeng Lu & Qiang Yang, 2022. "Location Optimization of Emergency Station for Dangerous Goods Accidents Considering Risk," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6088-:d:817506
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles ReVelle & Kathleen Hogan, 1989. "The Maximum Availability Location Problem," Transportation Science, INFORMS, vol. 23(3), pages 192-200, August.
    2. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    3. Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
    4. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    5. Kathleen Hogan & Charles ReVelle, 1986. "Concepts and Applications of Backup Coverage," Management Science, INFORMS, vol. 32(11), pages 1434-1444, November.
    6. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    7. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    8. Mark S. Daskin & Edmund H. Stern, 1981. "A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment," Transportation Science, INFORMS, vol. 15(2), pages 137-152, May.
    9. Marianov, Vladimir & Revelle, Charles, 1994. "The queuing probabilistic location set covering problem and some extensions," Socio-Economic Planning Sciences, Elsevier, vol. 28(3), pages 167-178.
    10. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    11. D. R. Shier & P. M. Dearing, 1983. "Optimal Locations for a Class of Nonlinear, Single-Facility Location Problems on a Network," Operations Research, INFORMS, vol. 31(2), pages 292-303, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bowen Guo & Wei Zhan, 2023. "Research on Integrated Scheduling of Multi-Mode Emergency Rescue for Flooding in Chemical Parks," Sustainability, MDPI, vol. 15(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    3. Zhi-Chun Li & Qian Liu, 2020. "Optimal deployment of emergency rescue stations in an urban transportation corridor," Transportation, Springer, vol. 47(1), pages 445-473, February.
    4. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    5. M Gendreau & G Laporte & F Semet, 2006. "The maximal expected coverage relocation problem for emergency vehicles," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 22-28, January.
    6. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    7. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    8. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    9. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    10. Leknes, Håkon & Aartun, Eirik Skorge & Andersson, Henrik & Christiansen, Marielle & Granberg, Tobias Andersson, 2017. "Strategic ambulance location for heterogeneous regions," European Journal of Operational Research, Elsevier, vol. 260(1), pages 122-133.
    11. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    12. Iloglu, Suzan & Albert, Laura A., 2020. "A maximal multiple coverage and network restoration problem for disaster recovery," Operations Research Perspectives, Elsevier, vol. 7(C).
    13. Shayesta Wajid & N. Nezamuddin, 2023. "Optimizing emergency services for road safety using a decomposition method: a case study of Delhi," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 155-173, March.
    14. Sun Hoon Kim & Young Hoon Lee, 2016. "Iterative optimization algorithm with parameter estimation for the ambulance location problem," Health Care Management Science, Springer, vol. 19(4), pages 362-382, December.
    15. Dmitrii Usanov & G.A. Guido Legemaate & Peter M. van de Ven & Rob D. van der Mei, 2019. "Fire truck relocation during major incidents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 105-122, March.
    16. Andreea Avramescu & Richard Allmendinger & Manuel L'opez-Ib'a~nez, 2021. "Managing Manufacturing and Delivery of Personalised Medicine: Current and Future Models," Papers 2105.12699, arXiv.org.
    17. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    18. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    19. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    20. Yaw Asiedu & Mark Rempel, 2011. "A multiobjective coverage‐based model for Civilian search and rescue," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 167-179, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6088-:d:817506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.