IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/95.html
   My bibliography  Save this paper

Effective algorithms for integrated scheduling of handling equipment at automated container terminals

Author

Listed:
  • Meersmans, P.J.M.
  • Wagelmans, A.P.M.

Abstract

In this paper we consider the problem of integrated scheduling of various types of handling equipment at an automated container terminal, where the objective is to minimize the makespan of the schedule. We present a Branch & Bound algorithm that uses various combinatorial lower bounds. Computational experiments show that this algorithm is able to produce optimal or near optimal schedules for instances of practical size in a reasonable time. We also develop a Beam Search heuristic that can be used to tackle very large problem instances. Our experiments show that for such instances the heuristic obtains close to optimal solutions in a reasonable time.

Suggested Citation

  • Meersmans, P.J.M. & Wagelmans, A.P.M., 2001. "Effective algorithms for integrated scheduling of handling equipment at automated container terminals," ERIM Report Series Research in Management ERS-2001-36-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:95
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/95/erimrs20010608163434.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    2. Briskorn, Dirk & Drexl, Andreas & Hartmann, Sönke, 2005. "Inventory based dispatching of automated guided vehicles on container terminals," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 596, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    3. Wu, Yue & Luo, Jiabin & Zhang, Dali & Dong, Ming, 2013. "An integrated programming model for storage management and vehicle scheduling at container terminals," Research in Transportation Economics, Elsevier, vol. 42(1), pages 13-27.
    4. Di Luan & Mingjing Zhao & Qianru Zhao & Nan Wang, 2021. "Modelling of integrated scheduling problem of capacitated equipment systems with a multi-lane road network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-38, June.
    5. Harry Geerlings & Robert Heij & Ron van Duin, 2018. "Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals," Journal of Shipping and Trade, Springer, vol. 3(1), pages 1-20, December.
    6. Lau, Henry Y.K. & Zhao, Ying, 2008. "Integrated scheduling of handling equipment at automated container terminals," International Journal of Production Economics, Elsevier, vol. 112(2), pages 665-682, April.
    7. Vitalii Naumov & Daniel Kubek & Paweł Więcek & Iwona Skalna & Jerzy Duda & Robert Goncerz & Tomasz Derlecki, 2021. "Optimizing Energy Consumption in Internal Transportation Using Dynamic Transportation Vehicles Assignment Model: Case Study in Printing Company," Energies, MDPI, vol. 14(15), pages 1-22, July.
    8. Vis, Iris F.A., 2006. "Survey of research in the design and control of automated guided vehicle systems," European Journal of Operational Research, Elsevier, vol. 170(3), pages 677-709, May.

    More about this item

    Keywords

    AGV's; Container terminal; beam search; branch & bound; scheduling;
    All these keywords.

    JEL classification:

    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.