IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v641y2024ics0378437124002565.html
   My bibliography  Save this article

Car-following model based on spatial expectation effect in connected vehicle environment: modeling, stability analysis and identification

Author

Listed:
  • Zhang, Jing
  • Gao, Qian
  • Tian, Junfang
  • Cui, Fengying
  • Wang, Tao

Abstract

In driving situations, if drivers have advanced access to downstream traffic conditions ahead of time, they may modify their driving behavior accordingly. This proactive approach can help reduce frequent acceleration and deceleration of vehicles and minimize traffic congestion. This paper considers the average headway of downstream vehicles to predict the traffic conditions of downstream roads. Based on the full velocity difference (FVD) model, we propose a car-following model that incorporates spatial expectation effect (SEFVD). Firstly, a linear stability analysis is performed on the SEFVD model, and the results indicate that the critical value of the SEFVD model is relatively small, and the stabilization region increases gradually with the number of vehicles downstream. Secondly, employing perturbation amplitudes on a virtual circular road, a numerical simulation of the SEFVD model is carried out and compared with the FVD model. The results demonstrate that the SEFVD model has the ability to suppress the formation of traffic oscillations and stabilize vehicle formation more quickly. Simulation results for the 11 cars starting from a traffic signal indicate that the delay time and kinematic wave speed of the SEFVD model are within reasonable limits. To evaluate the changes in energy use, we also carried out energy consumption experiments. The experimental findings show that the SEFVD model uses less energy compared to the FVD model. Finally, the parameters of the models are calibrated and verified by using NGSIM data. The total calibration error of the SEFVD model (m = 2) decreases by 42.97% compared to the FVD model, and the total validation error decreases by 29.3%. The results show that the proposed model can fit the actual data well, and the fitting error is smaller.

Suggested Citation

  • Zhang, Jing & Gao, Qian & Tian, Junfang & Cui, Fengying & Wang, Tao, 2024. "Car-following model based on spatial expectation effect in connected vehicle environment: modeling, stability analysis and identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
  • Handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002565
    DOI: 10.1016/j.physa.2024.129747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124002565
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tao & Yuan, Zijian & Zhang, Yuanshu & Zhang, Jing & Tian, Junfang, 2023. "A driving guidance strategy with pre-stop line at signalized intersection: Collaborative optimization of capacity and fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. Zhang, Jing & Xu, Keyu & Li, Shubin & Wang, Tao, 2020. "A new two-lane lattice hydrodynamic model with the introduction of driver’s predictive effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. Da-Wei Liu & Zhong-Ke Shi & Wen-Huan Ai, 2017. "An improved car-following model from the perspective of driver’s forecast behavior," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 28(04), pages 1-17, April.
    4. Zhang, Jing & Xu, Keyu & Li, Guangyao & Li, Shubin & Wang, Tao, 2021. "Dynamics of traffic flow affected by the future motion of multiple preceding vehicles under vehicle-connected environment: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    5. Kuang, Hua & Wang, Mei-Ting & Lu, Fang-Hua & Bai, Ke-Zhao & Li, Xing-Li, 2019. "An extended car-following model considering multi-anticipative average velocity effect under V2V environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    6. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    7. Meng, Jingwei & Jin, Yanfei & Xu, Meng, 2023. "Stochastic dynamics of a discrete-time car-following model and its time-delayed feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    8. Peng, Guanghan & Jia, Teti & Zhao, Hongzhuan & Tan, Huili, 2023. "Integrating the historical evolution information integral effect in car-following model under the V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    9. Ou, Hui & Wang, Tao & Tang, Tie-Qiao, 2019. "Analysis of trip cost in a two-lane traffic corridor with one entry and one exit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 65-72.
    10. Zhang, Jing & Wang, Bo & Li, Shubin & Sun, Tao & Wang, Tao, 2020. "Modeling and application analysis of car-following model with predictive headway variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    11. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    12. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    13. Peng, Guang-han & Cheng, Rong-jun, 2013. "A new car-following model with the consideration of anticipation optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3563-3569.
    14. Peng, G.H. & Song, W. & Peng, Y.J. & Wang, S.H., 2014. "A novel macro model of traffic flow with the consideration of anticipation optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 76-82.
    15. Pan, Weixiu & Zhang, Jing & Tian, Junfang & Cui, Fengying & Wang, Tao, 2023. "Analysis of car–following behaviors based on data–driven and theory–driven car–following models: Heterogeneity and asymmetry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    16. Dong, Jiakuan & Luo, Dongyu & Gao, Zhijun & Wang, Jiangfeng & Chen, Lei, 2023. "Benefit of connectivity on promoting stability and capacity of traffic flow in automation era: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    17. Jiang, Nan & Yu, Bin & Cao, Feng & Dang, Pengfei & Cui, Shaohua, 2021. "An extended visual angle car-following model considering the vehicle types in the adjacent lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    18. Tang, Tie-Qiao & Wang, Tao & Chen, Liang & Huang, Hai-Jun, 2018. "Analysis of the equilibrium trip cost accounting for the fuel cost in a single-lane traffic system without late arrival," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 451-457.
    19. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiangzhou & Shi, Zhongke & Yang, Qiaoli & An, Xiaodong, 2024. "Impacts of visuo-spatial working memory on the dynamic performance and safety of car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Qi, Weiwei & Ma, Siwei & Fu, Chuanyun, 2023. "An improved car-following model considering the influence of multiple preceding vehicles in the same and two adjacent lanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    3. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    4. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Yadav, Sunita & Redhu, Poonam, 2024. "Impact of driving prediction on headway and velocity in car-following model under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    6. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    8. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended car-following model considering the self-stabilizing driving behavior of headway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 347-357.
    9. Liu, Zhaoze & Ge, Hongxia & Cheng, Rongjun, 2018. "KdV–Burgers equation in the modified continuum model considering the effect of friction and radius on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1218-1227.
    10. Qiao, Yan-feng & Xue, Yu & Wang, Xue & Cen, Bing-ling & Wang, Yi & Pan, Wei & Zhang, Yan-xin, 2021. "Investigation of PM emissions in cellular automata model with slow-to-start effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    11. Wang, Shutong & Zhu, Wen-Xing, 2022. "Modeling the heterogeneous traffic flow considering mean expected velocity field and effect of two-lane communication under connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Madaan, Nikita & Sharma, Sapna, 2021. "A lattice model accounting for multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    13. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "A car-following model considering the effect of electronic throttle opening angle over the curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    14. Zhang, Xiangzhou & Shi, Zhongke & Yu, Shaowei & Ma, Lijing, 2023. "A new car-following model considering driver’s desired visual angle on sharp curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    15. Zhaoze, Liu & Rongjun, Cheng & Hongxia, Ge, 2019. "Research on preceding vehicle’s taillight effect and energy consumption in an extended macro traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 304-314.
    16. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    17. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    18. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    19. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    20. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.