IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v551y2020ics0378437120300650.html
   My bibliography  Save this article

A new two-lane lattice hydrodynamic model with the introduction of driver’s predictive effect

Author

Listed:
  • Zhang, Jing
  • Xu, Keyu
  • Li, Shubin
  • Wang, Tao

Abstract

This paper devises a new two-lane lattice hydrodynamic model (TLHM) to explore driver’s predictive effect (DPE) on traffic oscillation. First, a linear approach is conducted to analytically predict the DPE on traffic performance. Theoretical analysis shows that with the help of DPE, the traffic flow stability will be gradually enhanced. Then, nonlinear analysis is implemented to explore the characteristics of traffic oscillation when sensitivity coefficient is near the critical point. The modified KdV equation derived from the new model and its analytical solution related kink–antikink density waves are obtained. Finally, numerical experiments show that the DPE can effectively dampen the growth of oscillation, which is well consistent with the theoretical analysis of the new model.

Suggested Citation

  • Zhang, Jing & Xu, Keyu & Li, Shubin & Wang, Tao, 2020. "A new two-lane lattice hydrodynamic model with the introduction of driver’s predictive effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
  • Handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437120300650
    DOI: 10.1016/j.physa.2020.124249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120300650
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiaopeng & Peng, Fan & Ouyang, Yanfeng, 2010. "Measurement and estimation of traffic oscillation properties," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 1-14, January.
    2. Guanghan Peng, 2013. "A New Lattice Model Of Two-Lane Traffic Flow With The Consideration Of Multi-Anticipation Effect," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(07), pages 1-13.
    3. Tian, Jun-fang & Yuan, Zhen-zhou & Jia, Bin & Li, Ming-hua & Jiang, Guo-jun, 2012. "The stabilization effect of the density difference in the modified lattice hydrodynamic model of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(19), pages 4476-4482.
    4. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    5. Gupta, Arvind Kumar & Redhu, Poonam, 2013. "Analyses of driver’s anticipation effect in sensing relative flux in a new lattice model for two-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5622-5632.
    6. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    7. Peng, G.H., 2012. "A study of wide moving jams in a new lattice model of traffic flow with the consideration of the driver anticipation effect and numerical simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5971-5977.
    8. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Modeling and simulation of driver’s anticipation effect in a two lane system on curved road with slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 110-120.
    9. Junfang Tian & Bin Jia & Shoufeng Ma & Chenqiang Zhu & Rui Jiang & YaoXian Ding, 2017. "Cellular Automaton Model with Dynamical 2D Speed-Gap Relation," Transportation Science, INFORMS, vol. 51(3), pages 807-822, August.
    10. Kaur, Daljeet & Sharma, Sapna, 2020. "A new two-lane lattice model by considering predictive effect in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    11. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    12. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    13. Tian, Junfang & Treiber, Martin & Ma, Shoufeng & Jia, Bin & Zhang, Wenyi, 2015. "Microscopic driving theory with oscillatory congested states: Model and empirical verification," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 138-157.
    14. Redhu, Poonam & Gupta, Arvind Kumar, 2016. "Effect of forward looking sites on a multi-phase lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 150-160.
    15. Nagatani, Takashi, 1999. "Jamming transitions and the modified Korteweg–de Vries equation in a two-lane traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 265(1), pages 297-310.
    16. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    17. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    18. Sharma, Sapna, 2015. "Lattice hydrodynamic modeling of two-lane traffic flow with timid and aggressive driving behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 401-411.
    19. Redhu, Poonam & Gupta, Arvind Kumar, 2015. "Jamming transitions and the effect of interruption probability in a lattice traffic flow model with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 249-260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madaan, Nikita & Sharma, Sapna, 2022. "Delayed-feedback control in multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    2. Madaan, Nikita & Sharma, Sapna, 2021. "A lattice model accounting for multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    3. Nikita Madaan & Sapna Sharma, 2022. "Influence of driver’s behavior with empirical lane changing on the traffic dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(1), pages 1-11, January.
    4. Huimin Liu & Rongjun Cheng & Tingliu Xu, 2021. "Analysis of a Novel Two-Dimensional Lattice Hydrodynamic Model Considering Predictive Effect," Mathematics, MDPI, vol. 9(19), pages 1-13, October.
    5. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2024. "Phase transitions of dual-lane lattice model incorporating cyber-attacks on lane change involving inflow and outflow under connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Zhang, Yicai & Zhao, Min & Sun, Dihua & Liu, Xiaoyu & Huang, Shuai & Chen, Dong, 2022. "Robust H-infinity control for connected vehicles in lattice hydrodynamic model at highway tunnel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    7. Chen, Jin & Sun, Dihua & Zhao, Min & Li, Yang & Liu, Zhongcheng, 2021. "DCFS-based deep learning supervisory control for modeling lane keeping of expert drivers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    8. Zhang, Jing & Gao, Qian & Tian, Junfang & Cui, Fengying & Wang, Tao, 2024. "Car-following model based on spatial expectation effect in connected vehicle environment: modeling, stability analysis and identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jing & Wang, Bo & Li, Shubin & Sun, Tao & Wang, Tao, 2020. "Modeling and application analysis of car-following model with predictive headway variation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Madaan, Nikita & Sharma, Sapna, 2021. "A lattice model accounting for multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    3. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Analyses of lattice hydrodynamic model using delayed feedback control with passing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 446-455.
    4. Tian, Junfang & Zhang, H.M. & Treiber, Martin & Jiang, Rui & Gao, Zi-You & Jia, Bin, 2019. "On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 334-350.
    5. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    6. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    7. Zhang, Jing & Xu, Keyu & Li, Guangyao & Li, Shubin & Wang, Tao, 2021. "Dynamics of traffic flow affected by the future motion of multiple preceding vehicles under vehicle-connected environment: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    8. Nikita Madaan & Sapna Sharma, 2022. "Influence of driver’s behavior with empirical lane changing on the traffic dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(1), pages 1-11, January.
    9. Li, Xiaopeng & Ghiasi, Amir & Xu, Zhigang & Qu, Xiaobo, 2018. "A piecewise trajectory optimization model for connected automated vehicles: Exact optimization algorithm and queue propagation analysis," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 429-456.
    10. Kaur, Daljeet & Sharma, Sapna, 2020. "A new two-lane lattice model by considering predictive effect in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    11. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    12. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Modeling and simulation of driver’s anticipation effect in a two lane system on curved road with slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 110-120.
    13. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "An extended lattice hydrodynamic model considering the driver’s sensory memory and delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 522-532.
    14. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2023. "Jamming transition in two-lane lattice model integrating the deception attacks on influx during the lane-changing process under vehicle to everything environment," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    15. Liu, Hui & Sun, Dihua & Liu, Weining, 2016. "Lattice hydrodynamic model based traffic control: A transportation cyber–physical system approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 795-801.
    16. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    17. Li, Zhen-Hua & Zheng, Shi-Teng & Jiang, Rui & Tian, Jun-Fang & Zhu, Kai-Xuan & Di Pace, Roberta, 2022. "Empirical and simulation study on traffic oscillation characteristic using floating car data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    18. Kaur, Daljeet & Sharma, Sapna & Gupta, Arvind Kumar, 2022. "Analyses of lattice hydrodynamic area occupancy model for heterogeneous disorder traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    19. Cen, Bing-ling & Xue, Yu & Zhang, Yi-cai & Wang, Xue & He, Hong-di, 2020. "A feedback control method with consideration of the next-nearest-neighbor interactions in a lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    20. Zhang, Yicai & Zhao, Min & Sun, Dihua & Liu, Xiaoyu & Huang, Shuai & Chen, Dong, 2022. "Robust H-infinity control for connected vehicles in lattice hydrodynamic model at highway tunnel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437120300650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.