IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v639y2024ics0378437124001808.html
   My bibliography  Save this article

Parameter estimation for Gipps’ car following model in a Bayesian framework

Author

Listed:
  • Ting, Samson
  • Lymburn, Thomas
  • Stemler, Thomas
  • Sun, Yuchao
  • Small, Michael

Abstract

Car following model is an important part in traffic modelling and has attracted a lot of attentions in the literature. As the proposed car following models become more complex with more components, reliably estimating their parameters becomes crucial to enhance model predictive performance. While most studies adopt an optimisation-based approach for parameters estimation, we present a statistically rigorous method that quantifies uncertainty of the estimates. We present a Bayesian approach to estimate parameters using the popular Gipps’ car following model as demonstration, which allows proper uncertainty quantification and propagation. Since the parameters of the car following model enter the statistical model through the solution of a delay-differential equation, the posterior is analytically intractable so we implemented an adaptive Markov Chain Monte Carlo algorithm to sample from it. Our results show that predictive uncertainty using a point estimator versus a full Bayesian approach are similar with sufficient data. In the absence of adequate data, the former can make over-confident predictions while such uncertainty is more appropriately incorporated in a Bayesian framework. Furthermore, we found that the congested flow parameters in the Gipps’ car following model are strongly correlated in the posterior, which not only causes issues for sampling efficiency but more so suggests the potential ineffectiveness of a point estimator in an optimisation-based approach. Lastly, an application of the Bayesian approach to a car following episode in the NGISM dataset is presented.

Suggested Citation

  • Ting, Samson & Lymburn, Thomas & Stemler, Thomas & Sun, Yuchao & Small, Michael, 2024. "Parameter estimation for Gipps’ car following model in a Bayesian framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
  • Handle: RePEc:eee:phsmap:v:639:y:2024:i:c:s0378437124001808
    DOI: 10.1016/j.physa.2024.129671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124001808
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    2. Cui, Ziyu & Wang, Xiaoning & Ci, Yusheng & Yang, Changyun & Yao, Jia, 2023. "Modeling and analysis of car-following models incorporating multiple lead vehicles and acceleration information in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Yaron Hollander & Ronghui Liu, 2008. "The principles of calibrating traffic microsimulation models," Transportation, Springer, vol. 35(3), pages 347-362, May.
    4. Peng, Yong & Liu, Shijie & Yu, Dennis Z., 2020. "An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    5. Craiu, Radu V. & Rosenthal, Jeffrey & Yang, Chao, 2009. "Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1454-1466.
    6. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Pan, Weixiu & Zhang, Jing & Tian, Junfang & Cui, Fengying & Wang, Tao, 2023. "Analysis of car–following behaviors based on data–driven and theory–driven car–following models: Heterogeneity and asymmetry," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Weiwei & Ma, Siwei & Fu, Chuanyun, 2023. "An improved car-following model considering the influence of multiple preceding vehicles in the same and two adjacent lanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    2. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà & Tullio Giuffrè, 2023. "A Methodological Framework to Assess Road Infrastructure Safety and Performance Efficiency in the Transition toward Cooperative Driving," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    3. Yi, Ziwei & Lu, Wenqi & Qu, Xu & Gan, Jing & Li, Linheng & Ran, Bin, 2022. "A bidirectional car-following model considering distance balance between adjacent vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    5. Osorio, Carolina & Punzo, Vincenzo, 2019. "Efficient calibration of microscopic car-following models for large-scale stochastic network simulators," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 156-173.
    6. Cheng-Ju Song & Hong-Fei Jia, 2022. "Car-Following Model Optimization and Simulation Based on Cooperative Adaptive Cruise Control," Sustainability, MDPI, vol. 14(21), pages 1-12, October.
    7. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    8. Rehborn, Hubert & Klenov, Sergey L. & Palmer, Jochen, 2011. "An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4466-4485.
    9. Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Papers 2004.11486, arXiv.org.
    10. Yaqi Liu & Xiaoyuan Wang, 2020. "Differences in Driving Intention Transitions Caused by Driver’s Emotion Evolutions," IJERPH, MDPI, vol. 17(19), pages 1-22, September.
    11. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    12. Ziakopoulos, Apostolos & Oikonomou, Maria G. & Vlahogianni, Eleni I. & Yannis, George, 2021. "Quantifying the implementation impacts of a point to point automated urban shuttle service in a large-scale network," Transport Policy, Elsevier, vol. 114(C), pages 233-244.
    13. Simin Hesami & Majid Vafaeipour & Cedric De Cauwer & Evy Rombaut & Lieselot Vanhaverbeke & Thierry Coosemans, 2023. "Dynamic Pro-Active Eco-Driving Control Framework for Energy-Efficient Autonomous Electric Mobility," Energies, MDPI, vol. 16(18), pages 1-19, September.
    14. Andrea Papu Carrone & Jeppe Rich & Christian Anker Vandet & Kun An, 2021. "Autonomous vehicles in mixed motorway traffic: capacity utilisation, impact and policy implications," Transportation, Springer, vol. 48(6), pages 2907-2938, December.
    15. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    16. Tordeux, Antoine & Lassarre, Sylvain & Roussignol, Michel, 2010. "An adaptive time gap car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1115-1131, September.
    17. Blanch Micó, Mª Teresa & Lucas Alba, Antonio & Bellés Rivera, Teresa & Ferruz Gracia, Ana Mª & Melchor Galán, Óscar M. & Delgado Pastor, Luis C. & Ruíz Jiménez, Francisco & Chóliz Montañés, Mariano, 2018. "Car following: Comparing distance-oriented vs. inertia-oriented driving techniques," Transport Policy, Elsevier, vol. 67(C), pages 13-22.
    18. Pan, Wei & Xue, Yu & He, Hong-Di & Lu, Wei-Zhen, 2018. "Impacts of traffic congestion on fuel rate, dissipation and particle emission in a single lane based on Nasch Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 154-162.
    19. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    20. Tian, Junfang & Treiber, Martin & Ma, Shoufeng & Jia, Bin & Zhang, Wenyi, 2015. "Microscopic driving theory with oscillatory congested states: Model and empirical verification," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 138-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:639:y:2024:i:c:s0378437124001808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.