IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v48y2021i6d10.1007_s11116-020-10154-4.html
   My bibliography  Save this article

Autonomous vehicles in mixed motorway traffic: capacity utilisation, impact and policy implications

Author

Listed:
  • Andrea Papu Carrone

    (Technical University of Denmark)

  • Jeppe Rich

    (Technical University of Denmark)

  • Christian Anker Vandet

    (Technical University of Denmark)

  • Kun An

    (Tongji University)

Abstract

In upcoming years, the introduction of autonomous vehicles (AVs) will reshape the transport system. The transition from a regular to an autonomous transport system, however, will take place over many years and lead to a long period with a mixed driving environment where AVs and regular vehicles (RVs) operate side by side. The purpose of this study is to investigate how the utilisation of the road capacity degrades as a function of heterogeneity in congested motorways. The analysis is based on a dedicated traffic simulator, which enables the investigation of complex dynamic spillback from congestion while allowing for different degrees of heterogeneity. The representation of autonomous vehicles is based on a modified intelligent driver model (IIDM) presented by Treiber et al. (Phys Rev E 62(2):1805–1824, 2000) and Treiber and Kesting (Traffic flow dynamics, Springer, Heidelberg, 2013), while the behaviour of drivers of RVs relies on a stochastic version of the IIDM. Three main conclusions stand out. Firstly, it is shown that in an idealised environment in which AVs operate alone, a substantially improved capacity utilisation can be attained. Secondly, when drivers of RVs are mixed with AVs, capacity utilisation degrades very fast as a function of the share of RVs. Thirdly, it is shown that the improved capacity utilisation of AVs comes in the form of reduced travel time and increased throughput, with indications that travel time reductions are the most important. From a strategical planning perspective, the results underline that dedicated lanes are preferable to attain the positive effects of AVs. Specifically, we compare a stylised situation with three lanes with a share of 33% AVs to a situation with two regular lanes and a single dedicated AV lane. The latter represents a tripling in consumer surplus all other things being equal.

Suggested Citation

  • Andrea Papu Carrone & Jeppe Rich & Christian Anker Vandet & Kun An, 2021. "Autonomous vehicles in mixed motorway traffic: capacity utilisation, impact and policy implications," Transportation, Springer, vol. 48(6), pages 2907-2938, December.
  • Handle: RePEc:kap:transp:v:48:y:2021:i:6:d:10.1007_s11116-020-10154-4
    DOI: 10.1007/s11116-020-10154-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-020-10154-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-020-10154-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prateek Bansal & Kara M. Kockelman, 2018. "Are we ready to embrace connected and self-driving vehicles? A case study of Texans," Transportation, Springer, vol. 45(2), pages 641-675, March.
    2. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    3. Mustapha Harb & Yu Xiao & Giovanni Circella & Patricia L. Mokhtarian & Joan L. Walker, 2018. "Projecting travelers into a world of self-driving vehicles: estimating travel behavior implications via a naturalistic experiment," Transportation, Springer, vol. 45(6), pages 1671-1685, November.
    4. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    5. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 274-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haokun Song & Fuquan Zhao & Guangyu Zhu & Haoyi Zhang & Zongwei Liu, 2024. "Evaluation of Traffic Efficiency and Energy-Saving Benefits of L3 Smart Vehicles under the Urban Expressway Scenario," Sustainability, MDPI, vol. 16(10), pages 1-31, May.
    2. Dong, Jiakuan & Gao, Zhijun & Luo, Dongyu & Wang, Jiangfeng & Chen, Lei, 2024. "Impact of beyond-line-of-sight connectivity on the capacity and stability of mixed traffic flow: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    3. Ron Yang, 2022. "(Don’t) Take Me Home: Home Preference and the Effect of Self-Driving Trucks on Interstate Trade," NBER Chapters, in: Economics of Artificial Intelligence, National Bureau of Economic Research, Inc.
    4. Sajjad Shafiei & Ziyuan Gu & Hanna Grzybowska & Chen Cai, 2023. "Impact of self-parking autonomous vehicles on urban traffic congestion," Transportation, Springer, vol. 50(1), pages 183-203, February.
    5. Chen, Yingda & Li, Keping & Zhang, Lun & Chen, Yili & Xiao, Xue, 2024. "Modeling and analysis of mixed traffic flow capacity and stability considering human-driven vehicle drivers' trust attitude towards intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    6. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    7. Dilshad Mohammed & Balázs Horváth, 2024. "Assessing the Paradox of Autonomous Vehicles: Promised Fuel Efficiency vs. Aggregate Fuel Consumption," Energies, MDPI, vol. 17(7), pages 1-19, March.
    8. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    2. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    3. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    4. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    5. Wu, Xinyu & Xiao, Xinping, 2024. "An improved stochastic car-following model considering the complete state information of multiple preceding vehicles under connected vehicles environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 644(C).
    6. Koutsopoulos, Haris N. & Farah, Haneen, 2012. "Latent class model for car following behavior," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 563-578.
    7. Tordeux, Antoine & Lassarre, Sylvain & Roussignol, Michel, 2010. "An adaptive time gap car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1115-1131, September.
    8. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Blanch Micó, Mª Teresa & Lucas Alba, Antonio & Bellés Rivera, Teresa & Ferruz Gracia, Ana Mª & Melchor Galán, Óscar M. & Delgado Pastor, Luis C. & Ruíz Jiménez, Francisco & Chóliz Montañés, Mariano, 2018. "Car following: Comparing distance-oriented vs. inertia-oriented driving techniques," Transport Policy, Elsevier, vol. 67(C), pages 13-22.
    10. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    11. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    12. Maiti, Nandan & Chilukuri, Bhargava Rama, 2023. "Does anisotropy hold in mixed traffic conditions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    13. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    14. Wang, Pengcheng & Yu, Guizhen & Wu, Xinkai & Qin, Hongmao & Wang, Yunpeng, 2018. "An extended car-following model to describe connected traffic dynamics under cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 351-370.
    15. Zheng, Liang & Jin, Peter J. & Huang, Helai, 2015. "An anisotropic continuum model considering bi-directional information impact," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 36-57.
    16. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    17. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    18. Chiabaut, Nicolas & Leclercq, Ludovic & Buisson, Christine, 2010. "From heterogeneous drivers to macroscopic patterns in congestion," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 299-308, February.
    19. Li, Xiaopeng & Peng, Fan & Ouyang, Yanfeng, 2010. "Measurement and estimation of traffic oscillation properties," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 1-14, January.
    20. Tian, Junfang & Zhang, H.M. & Treiber, Martin & Jiang, Rui & Gao, Zi-You & Jia, Bin, 2019. "On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 334-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:48:y:2021:i:6:d:10.1007_s11116-020-10154-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.