IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v637y2024ics0378437124001110.html
   My bibliography  Save this article

Regulating spatiotemporal dynamics for a delay Gierer–Meinhardt model

Author

Listed:
  • He, Haoming
  • Xiao, Min
  • He, Jiajin
  • Zheng, Weixing

Abstract

As a classical activator-inhibitor system with diffusion effects, the Gierer–Meinhardt (GM) model has received a considerable attention in recent years. Discussions on dynamic behaviors of the GM model are well underway. However, we still lack the means to further detect the bifurcation direction and the stability of bifurcated periodic solutions as a Hopf bifurcation appears in the space–time evolution. Besides, control strategies for regulating the space-time dynamics to achieve the desired biological patterns are also neglected. These are the tasks that this paper attempts to tackle. Through Hopf bifurcation and Turing instability theorems, it is demonstrated that by adjusting the controller parameters appropriately, the occurrence of the Hopf bifurcation can be delayed and the threshold of Turing instability can also be broadened. Go a step further, we have deliberated the bifurcation direction of the controlled GM model under the influence of self-diffusion coefficients. As a result, the control effect is verified by comparison in numerical simulations.

Suggested Citation

  • He, Haoming & Xiao, Min & He, Jiajin & Zheng, Weixing, 2024. "Regulating spatiotemporal dynamics for a delay Gierer–Meinhardt model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
  • Handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124001110
    DOI: 10.1016/j.physa.2024.129603
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124001110
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129603?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Fatao & Yang, Ruizhi, 2023. "Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Duan, Moran & Chang, Lili & Jin, Zhen, 2019. "Turing patterns of an SI epidemic model with cross-diffusion on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    3. Si, Lingzhi & Xiao, Min & Wang, Zhengxin & Huang, Chengdai & Cheng, Zunsgui & Tao, Binbin & Xu, Fengyu, 2019. "Dynamic optimal control at Hopf bifurcation of a Newman–Watts model of small-world networks via a new PD1n scheme," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
    4. Mai, F.X. & Qin, L.J. & Zhang, G., 2012. "Turing instability for a semi-discrete Gierer–Meinhardt system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2014-2022.
    5. dos S. Silva, F.A. & Viana, R.L. & Lopes, S.R., 2015. "Pattern formation and Turing instability in an activator–inhibitor system with power-law coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 487-497.
    6. Mukherjee, Nayana & Banerjee, Malay, 2022. "Hunting cooperation among slowly diffusing specialist predators can induce stationary Turing patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    7. Wang, Jinliang & Li, You & Zhong, Shihong & Hou, Xiaojie, 2019. "Analysis of bifurcation, chaos and pattern formation in a discrete time and space Gierer Meinhardt system," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 1-17.
    8. Liu, Haicheng & Ge, Bin, 2022. "Turing instability of periodic solutions for the Gierer–Meinhardt model with cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Ruizhi Yang & Xiao Zhao & Yong An, 2022. "Dynamical Analysis of a Delayed Diffusive Predator–Prey Model with Additional Food Provided and Anti-Predator Behavior," Mathematics, MDPI, vol. 10(3), pages 1-18, January.
    10. Yao, Shao-Wen & Ma, Zhan-Ping & Yue, Jia-Long, 2018. "Bistability and Turing pattern induced by cross fraction diffusion in a predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 982-988.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ranchao & Zhou, Yue & Shao, Yan & Chen, Liping, 2017. "Bifurcation and Turing patterns of reaction–diffusion activator–inhibitor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 597-610.
    2. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Li, Tianhua & Zhang, Xuetian & Zhang, Chunrui, 2024. "Pattern dynamics analysis of a space–time discrete spruce budworm model," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    4. Wenqi Zhang & Dan Jin & Ruizhi Yang, 2023. "Hopf Bifurcation in a Predator–Prey Model with Memory Effect in Predator and Anti-Predator Behaviour in Prey," Mathematics, MDPI, vol. 11(3), pages 1-12, January.
    5. Jiao, Xubin & Li, Xiaodi & Yang, Youping, 2022. "Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Yang, Junxiang & Kim, Junseok, 2023. "Computer simulation of the nonhomogeneous zebra pattern formation using a mathematical model with space-dependent parameters," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Bilazeroğlu, Ş. & Göktepe, S. & Merdan, H., 2023. "Effects of the random walk and the maturation period in a diffusive predator–prey system with two discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Lu, Guangqing & Smidtaite, Rasa & Howard, Daniel & Ragulskis, Minvydas, 2019. "An image hiding scheme in a 2-dimensional coupled map lattice of matrices," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 78-85.
    10. Han, Xiaoling & Lei, Ceyu, 2023. "Bifurcation and turing instability analysis for a space- and time-discrete predator–prey system with Smith growth function," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    11. Huang, Chengdai & Liu, Heng & Chen, Xiaoping & Zhang, Minsong & Ding, Ling & Cao, Jinde & Alsaedi, Ahmed, 2020. "Dynamic optimal control of enhancing feedback treatment for a delayed fractional order predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    12. Jeong, Darae & Li, Yibao & Choi, Yongho & Yoo, Minhyun & Kang, Dooyoung & Park, Junyoung & Choi, Jaewon & Kim, Junseok, 2017. "Numerical simulation of the zebra pattern formation on a three-dimensional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 106-116.
    13. Wang, Fatao & Yang, Ruizhi & Zhang, Xin, 2024. "Turing patterns in a predator–prey model with double Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 170-191.
    14. Zhang, Xuetian & Zhang, Chunrui & Zhang, Yazhuo, 2024. "Discrete kinetic analysis of a general reaction–diffusion model constructed by Euler discretization and coupled map lattices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1218-1236.
    15. Hu, Junlang & Zhu, Linhe, 2021. "Turing pattern analysis of a reaction-diffusion rumor propagation system with time delay in both network and non-network environments," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    16. Kaya, Guven & Kartal, Senol & Gurcan, Fuat, 2020. "Dynamical analysis of a discrete conformable fractional order bacteria population model in a microcosm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    17. Ghorai, Santu & Poria, Swarup, 2016. "Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 57-67.
    18. d’Onofrio, Alberto & Banerjee, Malay & Manfredi, Piero, 2020. "Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    19. He, Haoming & Xiao, Min & Lu, Yunxiang & Wang, Zhen & Tao, Binbin, 2023. "Control of tipping in a small-world network model via a novel dynamic delayed feedback scheme," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    20. Yangyang Shao & Yan Meng & Xinyue Xu, 2022. "Turing Instability and Spatiotemporal Pattern Formation Induced by Nonlinear Reaction Cross-Diffusion in a Predator–Prey System with Allee Effect," Mathematics, MDPI, vol. 10(9), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124001110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.