IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p469-d739419.html
   My bibliography  Save this article

Dynamical Analysis of a Delayed Diffusive Predator–Prey Model with Additional Food Provided and Anti-Predator Behavior

Author

Listed:
  • Ruizhi Yang

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

  • Xiao Zhao

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

  • Yong An

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

Abstract

We studied a delayed predator–prey model with diffusion and anti-predator behavior. Assume that additional food is provided for predator population. Then the stability of the positive equilibrium is considered. The existence of Hopf bifurcation is also discussed based on the Hopf bifurcation theory. The property of Hopf bifurcation is derived through the theory of center manifold and normal form method. Finally, we analyze the effect of time delay on the model through numerical simulations.

Suggested Citation

  • Ruizhi Yang & Xiao Zhao & Yong An, 2022. "Dynamical Analysis of a Delayed Diffusive Predator–Prey Model with Additional Food Provided and Anti-Predator Behavior," Mathematics, MDPI, vol. 10(3), pages 1-18, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:469-:d:739419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/469/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Haoming & Xiao, Min & He, Jiajin & Zheng, Weixing, 2024. "Regulating spatiotemporal dynamics for a delay Gierer–Meinhardt model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Abbasi, Muhammad Aqib & Samreen, Maria, 2024. "Analyzing multi-parameter bifurcation on a prey–predator model with the Allee effect and fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Wenqi Zhang & Dan Jin & Ruizhi Yang, 2023. "Hopf Bifurcation in a Predator–Prey Model with Memory Effect in Predator and Anti-Predator Behaviour in Prey," Mathematics, MDPI, vol. 11(3), pages 1-12, January.
    4. Jiao, Xubin & Li, Xiaodi & Yang, Youping, 2022. "Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:469-:d:739419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.