IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v475y2017icp106-116.html
   My bibliography  Save this article

Numerical simulation of the zebra pattern formation on a three-dimensional model

Author

Listed:
  • Jeong, Darae
  • Li, Yibao
  • Choi, Yongho
  • Yoo, Minhyun
  • Kang, Dooyoung
  • Park, Junyoung
  • Choi, Jaewon
  • Kim, Junseok

Abstract

In this paper, we numerically investigate the zebra skin pattern formation on the surface of a zebra model in three-dimensional space. To model the pattern formation, we use the Lengyel–Epstein model which is a two component activator and inhibitor system. The concentration profiles of the Lengyel–Epstein model are obtained by solving the corresponding reaction–diffusion equation numerically using a finite difference method. We represent the zebra surface implicitly as the zero level set of a signed distance function and then solve the resulting system on a discrete narrow band domain containing the zebra skin. The values at boundary are dealt with an interpolation using the closet point method. We present the numerical method in detail and investigate the effect of the model parameters on the pattern formation on the surface of the zebra model.

Suggested Citation

  • Jeong, Darae & Li, Yibao & Choi, Yongho & Yoo, Minhyun & Kang, Dooyoung & Park, Junyoung & Choi, Jaewon & Kim, Junseok, 2017. "Numerical simulation of the zebra pattern formation on a three-dimensional model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 106-116.
  • Handle: RePEc:eee:phsmap:v:475:y:2017:i:c:p:106-116
    DOI: 10.1016/j.physa.2017.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117301280
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. dos S. Silva, F.A. & Viana, R.L. & Lopes, S.R., 2015. "Pattern formation and Turing instability in an activator–inhibitor system with power-law coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 487-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong, Darae & Li, Yibao & Choi, Yongho & Lee, Chaeyoung & Yang, Junxiang & Kim, Junseok, 2021. "A practical adaptive grid method for the Allen–Cahn equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    2. Yang, Junxiang & Kim, Junseok, 2023. "Computer simulation of the nonhomogeneous zebra pattern formation using a mathematical model with space-dependent parameters," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    3. Kim, Hyundong & Jyoti, & Kwak, Soobin & Ham, Seokjun & Kim, Junseok, 2024. "In silico investigation of the formation of multiple intense zebra stripes using extending domain," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 648-658.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ranchao & Zhou, Yue & Shao, Yan & Chen, Liping, 2017. "Bifurcation and Turing patterns of reaction–diffusion activator–inhibitor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 597-610.
    2. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Ghorai, Santu & Poria, Swarup, 2016. "Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 57-67.
    4. He, Haoming & Xiao, Min & He, Jiajin & Zheng, Weixing, 2024. "Regulating spatiotemporal dynamics for a delay Gierer–Meinhardt model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:475:y:2017:i:c:p:106-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.