IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v545y2020ics0378437119321016.html
   My bibliography  Save this article

Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease

Author

Listed:
  • d’Onofrio, Alberto
  • Banerjee, Malay
  • Manfredi, Piero

Abstract

Reducing risky behaviour and/or avoiding sites where the risk of infection is perceived as higher (by social and/or spatial distancing) represent the two main forms of non-pharmaceutical behavioural responses of humans to the threats of infectious diseases. Here we investigate, within a reaction–diffusion setting, a family of new models for an endemic SIR (susceptible–infective–removed) infectious disease for which no vaccine is available and individuals’ responses to the infection threat are entirely based on changes either in their social behaviour or in their mobility behaviour, that is avoiding to visit sites with a large infection prevalence.

Suggested Citation

  • d’Onofrio, Alberto & Banerjee, Malay & Manfredi, Piero, 2020. "Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  • Handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321016
    DOI: 10.1016/j.physa.2019.123773
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321016
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Moran & Chang, Lili & Jin, Zhen, 2019. "Turing patterns of an SI epidemic model with cross-diffusion on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    2. Wang, Tao, 2014. "Dynamics of an epidemic model with spatial diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 119-129.
    3. Fabio Milner & Ruijun Zhao, 2008. "S-I-R Model with Directed Spatial Diffusion," Mathematical Population Studies, Taylor & Francis Journals, vol. 15(3), pages 160-181.
    4. Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
    5. David P. Durham & Elizabeth A. Casman & Steven M. Albert, 2012. "Deriving Behavior Model Parameters from Survey Data: Self‐Protective Behavior Adoption During the 2009–2010 Influenza A(H1N1) Pandemic," Risk Analysis, John Wiley & Sons, vol. 32(12), pages 2020-2031, December.
    6. Li, Li & Zhang, Jie & Liu, Chen & Zhang, Hong-Tao & Wang, Yi & Wang, Zhen, 2019. "Analysis of transmission dynamics for Zika virus on networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 566-577.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samiran Ghosh & Vitaly Volpert & Malay Banerjee, 2022. "An Epidemic Model with Time Delay Determined by the Disease Duration," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    2. Arazi, R. & Feigel, A., 2021. "Discontinuous transitions of social distancing in the SIR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhang & Juan Zhang & Yong-Ping Wu & Li Li, 2019. "Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold," Complexity, Hindawi, vol. 2019, pages 1-13, May.
    2. M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    3. Xu, Bo & Wang, Ying & Han, Yu & He, Yuchang & Wang, Ziwei, 2021. "Interaction patterns and coordination in two population groups: A dynamic perspective," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    5. Wang, Jin-Shan & Wu, Yong-Ping & Li, Li & Sun, Gui-Quan, 2020. "Effect of mobility and predator switching on the dynamical behavior of a predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Wang, Fei & Yuan, Yu & Lu, Liangdong, 2021. "Dynamical prediction model of consumers’ purchase intentions regarding anti-smog products during smog risk: Taking the information flow perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    7. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Yuan, Guanghui & Han, Jingti & Zhou, Lei & Liang, Hejun & Zhang, Yicheng, 2019. "Supply and demand law under variable information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    10. Xuzhen Zhu & Jinming Ma & Xin Su & Hui Tian & Wei Wang & Shimin Cai, 2019. "Information Spreading on Weighted Multiplex Social Network," Complexity, Hindawi, vol. 2019, pages 1-15, November.
    11. Sudhir Venkatesan & Jonathan S Nguyen-Van-Tam & Peer-Olaf Siebers, 2019. "A novel framework for evaluating the impact of individual decision-making on public health outcomes and its potential application to study antiviral treatment collection during an influenza pandemic," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-14, October.
    12. Li, Ling & Dong, Gaogao & Zhu, Huaiping & Tian, Lixin, 2024. "Impact of multiple doses of vaccination on epidemiological spread in multiple networks," Applied Mathematics and Computation, Elsevier, vol. 472(C).
    13. Li, WenYao & Xue, Xiaoyu & Pan, Liming & Lin, Tao & Wang, Wei, 2022. "Competing spreading dynamics in simplicial complex," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    14. Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    15. Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    16. Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    17. Victoria Chebotaeva & Paula A. Vasquez, 2023. "Erlang-Distributed SEIR Epidemic Models with Cross-Diffusion," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
    18. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    19. Chang, Lili & Jin, Zhen, 2018. "Efficient numerical methods for spatially extended population and epidemic models with time delay," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 138-154.
    20. Peng, Hao & Peng, Wangxin & Zhao, Dandan & Wang, Wei, 2020. "Impact of the heterogeneity of adoption thresholds on behavior spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.