Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2019.123773
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Duan, Moran & Chang, Lili & Jin, Zhen, 2019. "Turing patterns of an SI epidemic model with cross-diffusion on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
- Zhan, Xiu-Xiu & Liu, Chuang & Zhou, Ge & Zhang, Zi-Ke & Sun, Gui-Quan & Zhu, Jonathan J.H. & Jin, Zhen, 2018. "Coupling dynamics of epidemic spreading and information diffusion on complex networks," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 437-448.
- Wang, Tao, 2014. "Dynamics of an epidemic model with spatial diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 119-129.
- David P. Durham & Elizabeth A. Casman & Steven M. Albert, 2012. "Deriving Behavior Model Parameters from Survey Data: Self‐Protective Behavior Adoption During the 2009–2010 Influenza A(H1N1) Pandemic," Risk Analysis, John Wiley & Sons, vol. 32(12), pages 2020-2031, December.
- Fabio Milner & Ruijun Zhao, 2008. "S-I-R Model with Directed Spatial Diffusion," Mathematical Population Studies, Taylor & Francis Journals, vol. 15(3), pages 160-181.
- Li, Li & Zhang, Jie & Liu, Chen & Zhang, Hong-Tao & Wang, Yi & Wang, Zhen, 2019. "Analysis of transmission dynamics for Zika virus on networks," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 566-577.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Samiran Ghosh & Vitaly Volpert & Malay Banerjee, 2022. "An Epidemic Model with Time Delay Determined by the Disease Duration," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
- Arazi, R. & Feigel, A., 2021. "Discontinuous transitions of social distancing in the SIR model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Zhang & Juan Zhang & Yong-Ping Wu & Li Li, 2019. "Dynamical Analysis of the SEIB Model for Brucellosis Transmission to the Dairy Cows with Immunological Threshold," Complexity, Hindawi, vol. 2019, pages 1-13, May.
- M., Pitchaimani & M., Brasanna Devi, 2020. "Random effects in HIV infection model at Eclipse stage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
- Xu, Bo & Wang, Ying & Han, Yu & He, Yuchang & Wang, Ziwei, 2021. "Interaction patterns and coordination in two population groups: A dynamic perspective," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Wang, Fei & Yuan, Yu & Lu, Liangdong, 2021. "Dynamical prediction model of consumers’ purchase intentions regarding anti-smog products during smog risk: Taking the information flow perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
- Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Chen, Jie & Hu, Mao-Bin & Li, Ming, 2020. "Traffic-driven epidemic spreading dynamics with heterogeneous infection rates," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
- Chen, Zheng & Wu, Yong-Ping & Feng, Guo-Lin & Qian, Zhong-Hua & Sun, Gui-Quan, 2021. "Effects of global warming on pattern dynamics of vegetation: Wuwei in China as a case," Applied Mathematics and Computation, Elsevier, vol. 390(C).
- Victoria Chebotaeva & Paula A. Vasquez, 2023. "Erlang-Distributed SEIR Epidemic Models with Cross-Diffusion," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
- Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
- Chang, Lili & Jin, Zhen, 2018. "Efficient numerical methods for spatially extended population and epidemic models with time delay," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 138-154.
- Li, Wenyao & Cai, Meng & Zhong, Xiaoni & Liu, Yanbing & Lin, Tao & Wang, Wei, 2023. "Coevolution of epidemic and infodemic on higher-order networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Mi-Young Kim & Tsendayush Selenge, 2016. "Discontinuous-continuous Galerkin methods for population diffusion with finite life span," Mathematical Population Studies, Taylor & Francis Journals, vol. 23(1), pages 17-36, January.
- Qu, Hongbo & Song, Yu-Rong & Li, Ruqi & Li, Min, 2023. "GNR: A universal and efficient node ranking model for various tasks based on graph neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
- Sudarshan Kumar & Tiziana Di Matteo & Anindya S. Chakrabarti, 2020. "Disentangling shock diffusion on complex networks: Identification through graph planarity," Papers 2001.01518, arXiv.org.
- Ganegoda, Naleen & Götz, Thomas & Putra Wijaya, Karunia, 2021. "An age-dependent model for dengue transmission: Analysis and comparison to field data," Applied Mathematics and Computation, Elsevier, vol. 388(C).
- Hu, Xin & Wang, Zhishuang & Sun, Qingyi & Chen, Jiaxing & Zhao, Dawei & Xia, Chengyi, 2024. "Coupled propagation between one communicable disease and related two types of information on multiplex networks with simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
- Gashirai, Tinashe B. & Musekwa-Hove, Senelani D. & Lolika, Paride O. & Mushayabasa, Steady, 2020. "Global stability and optimal control analysis of a foot-and-mouth disease model with vaccine failure and environmental transmission," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
- He, Haoming & Xiao, Min & He, Jiajin & Zheng, Weixing, 2024. "Regulating spatiotemporal dynamics for a delay Gierer–Meinhardt model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
- Lazebnik, Teddy, 2023. "Computational applications of extended SIR models: A review focused on airborne pandemics," Ecological Modelling, Elsevier, vol. 483(C).
- Norberto Aníbal Maidana & Hyun Mo Yang, 2013. "How Do Bird Migrations Propagate the West Nile virus," Mathematical Population Studies, Taylor & Francis Journals, vol. 20(4), pages 192-207, October.
More about this item
Keywords
Human behaviour; Infectious diseases; Spatial; Social distancing; Nonlinear cross-diffusion; Turing bifurcation; Turing–Hopf instability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:545:y:2020:i:c:s0378437119321016. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.