IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p556-d1042598.html
   My bibliography  Save this article

Hopf Bifurcation in a Predator–Prey Model with Memory Effect in Predator and Anti-Predator Behaviour in Prey

Author

Listed:
  • Wenqi Zhang

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

  • Dan Jin

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

  • Ruizhi Yang

    (Department of Mathematics, Northeast Forestry University, Harbin 150040, China)

Abstract

In this paper, a diffusive predator–prey model with a memory effect in predator and anti-predator behaviour in prey is studied. The stability of the coexisting equilibrium and the existence of Hopf bifurcation are analysed by analysing the distribution of characteristic roots. The property of Hopf bifurcation is investigated by the theory of the centre manifold and normal form method. Through the numerical simulations, it is observed that the anti-predator behaviour parameter η , the memory-based diffusion coefficient parameter d , and memory delay τ can affect the stability of the coexisting equilibrium under some parameters and cause the spatially inhomogeneous oscillation of prey and predator’s densities.

Suggested Citation

  • Wenqi Zhang & Dan Jin & Ruizhi Yang, 2023. "Hopf Bifurcation in a Predator–Prey Model with Memory Effect in Predator and Anti-Predator Behaviour in Prey," Mathematics, MDPI, vol. 11(3), pages 1-12, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:556-:d:1042598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/556/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/556/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Ruizhi & Ma, Jian, 2018. "Analysis of a diffusive predator-prey system with anti-predator behaviour and maturation delay," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 128-139.
    2. Ruizhi Yang & Xiao Zhao & Yong An, 2022. "Dynamical Analysis of a Delayed Diffusive Predator–Prey Model with Additional Food Provided and Anti-Predator Behavior," Mathematics, MDPI, vol. 10(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jingjing & Zheng, Hongchan & Jia, Yunfeng, 2021. "Dynamical analysis on a bacteria-phages model with delay and diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. He, Haoming & Xiao, Min & He, Jiajin & Zheng, Weixing, 2024. "Regulating spatiotemporal dynamics for a delay Gierer–Meinhardt model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Zhenglong Chen & Shunjie Li & Xuebing Zhang, 2022. "Analysis of a Delayed Reaction-Diffusion Predator–Prey System with Fear Effect and Anti-Predator Behaviour," Mathematics, MDPI, vol. 10(18), pages 1-20, September.
    4. Abbasi, Muhammad Aqib & Samreen, Maria, 2024. "Analyzing multi-parameter bifurcation on a prey–predator model with the Allee effect and fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Duan, Daifeng & Niu, Ben & Wei, Junjie, 2019. "Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 206-216.
    6. Jiao, Xubin & Li, Xiaodi & Yang, Youping, 2022. "Dynamics and bifurcations of a Filippov Leslie-Gower predator-prey model with group defense and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:556-:d:1042598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.