IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v607y2022ics0378437122007439.html
   My bibliography  Save this article

Microscopic state evolution model of mixed traffic flow based on potential field theory

Author

Listed:
  • Li, Linheng
  • Wang, Can
  • Zhang, Ying
  • Qu, Xu
  • Li, Rui
  • Chen, Zhijun
  • Ran, Bin

Abstract

To investigate the microscopic-state evolution mechanism of mixed traffic flow composed of Connected and Automated Vehicles (CAVs) and Human Driven Vehicles (HDVs) in the intelligent and connected environment, this paper proposed a safety potential field-NaSch (SPF-NS) model for mixed traffic flow based on potential field theory. The model introduces the safety potential field theory into the cellular automata model, reformulates the cellular automata rules and realizes the discretization of the potential field. In addition, a comparative numerical simulation experiment between NaSch model and SPF-NS model was designed. The results show that SPF-NS model can realize the real-time change of vehicle’s acceleration according to the potential field distribution, which is more precise for the actual car-following state description than NaSch model. At the same time, the road traffic flow stability under SPF-NS model is higher and the traffic capacity is increased. Besides, the microscopic-state evolution process of mixed traffic flow is emphatically studied, and the simulation experiments of different CAV penetration conditions are designed. The simulation results show that the stability of mixed traffic flow increases with the increase of CAV penetration. Compared with the HDV environment, when the CAV penetration of mixed traffic flow reaches 100%, The maximum traffic capacity of the road was increased by 2.2 times, and the congestion ratio was reduced by 96.60%. Therefore, this model can reflect the driving risk faced by vehicles in the process of car-following and simulate the microscopic-state evolution process of mixed traffic flow. The research results can provide theoretical support for future research on vehicle lane changing behavior, mixed traffic flow management and control, macroscopic state prediction in traffic flow and so on.

Suggested Citation

  • Li, Linheng & Wang, Can & Zhang, Ying & Qu, Xu & Li, Rui & Chen, Zhijun & Ran, Bin, 2022. "Microscopic state evolution model of mixed traffic flow based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  • Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007439
    DOI: 10.1016/j.physa.2022.128185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122007439
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    2. Qian, Yongsheng & Da, Cheng & Zeng, Junwei & Wang, Xuexin & Zhang, Yongzhi & Xu, Dejie, 2022. "A bidirectional quasi-moving block cellular automaton model for single-track railways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    3. Zhao, Han-Tao & Yang, Shuo & Chen, Xiao-Xu, 2016. "Cellular automata model for urban road traffic flow considering pedestrian crossing street," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1301-1313.
    4. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    5. Ghiasi, Amir & Hussain, Omar & Qian, Zhen (Sean) & Li, Xiaopeng, 2017. "A mixed traffic capacity analysis and lane management model for connected automated vehicles: A Markov chain method," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 266-292.
    6. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    7. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    8. Zhu, Liling & Tang, Yandong & Yang, Da, 2021. "Cellular automata-based modeling and simulation of the mixed traffic flow of vehicle platoon and normal vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    9. Li, Linheng & Gan, Jing & Zhou, Kun & Qu, Xu & Ran, Bin, 2020. "A novel lane-changing model of connected and automated vehicles: Using the safety potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ai, Yi & Li, Yueyang & Han, Xun & Yao, Zhihong & Li, Zongping, 2024. "Real-time risk assessment method for multi-aircraft interaction based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    2. He, Yongming & Feng, Jia & Wei, Kun & Cao, Jian & Chen, Shisheng & Wan, Yanan, 2023. "Modeling and simulation of lane-changing and collision avoiding autonomous vehicles on superhighways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    3. Jiang, Yangsheng & Ren, Tingting & Ma, Yuqin & Wu, Yunxia & Yao, Zhihong, 2023. "Traffic safety evaluation of mixed traffic flow considering the maximum platoon size of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    4. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    5. Yao, Zhihong & Li, Le & Liao, Wenbin & Wang, Yi & Wu, Yunxia, 2024. "Optimal lane management policy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    6. Pei, Yulong & Pan, Sheng & Wen, Yuhang, 2024. "Analysis of roadway capacity for heterogeneous traffic flows considering the degree of trust of drivers of HVs in CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    7. Sun, Baofeng & Ma, Guodong & Song, Jia & Cheng, Zeyang & Wang, Wei, 2023. "Driving safety field modeling focused on heterogeneous traffic flows and cooperative control strategy in highway merging zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    8. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    9. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    10. Ma, Ke & Wang, Hao & Ruan, Tiancheng, 2021. "Analysis of road capacity and pollutant emissions: Impacts of Connected and automated vehicle platoons on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    11. Dong, Jiakuan & Gao, Zhijun & Luo, Dongyu & Wang, Jiangfeng & Chen, Lei, 2024. "Impact of beyond-line-of-sight connectivity on the capacity and stability of mixed traffic flow: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    12. Qin, Yanyan & Luo, Qinzhong & Xiao, Tengfei & He, Zhengbing, 2024. "Modeling the mixed traffic capacity of minor roads at a priority intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    13. Vranken, Tim & Schreckenberg, Michael, 2022. "Modelling multi-lane heterogeneous traffic flow with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    14. Yao, Zhihong & Wang, Yi & Liu, Bo & Zhao, Bin & Jiang, Yangsheng, 2021. "Fuel consumption and transportation emissions evaluation of mixed traffic flow with connected automated vehicles and human-driven vehicles on expressway," Energy, Elsevier, vol. 230(C).
    15. Li, Haijian & Zhang, Junjie & Sun, Xiaoliang & Niu, Jun & Zhao, Xiaohua, 2022. "A survey of vehicle group behaviors simulation under a connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    17. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    18. Luo, Ying & Chen, Yanyan & Lu, Kaiming & Chen, Liang & Zhang, Jian, 2024. "Modeling and analysis of heterogeneous traffic flow considering dynamic information flow topology and driving behavioral characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    19. Luo, Ruifa & Gu, Qiufan & Xu, Taorang & Hao, Huijun & Yao, Zhihong, 2022. "Analysis of linear internal stability for mixed traffic flow of connected and automated vehicles considering multiple influencing factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    20. Vranken, Tim & Sliwa, Benjamin & Wietfeld, Christian & Schreckenberg, Michael, 2021. "Adapting a cellular automata model to describe heterogeneous traffic with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.