IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v634y2024ics0378437123010087.html
   My bibliography  Save this article

Delay-induced phase transitions in active matter

Author

Listed:
  • Pakpour, Fatemeh
  • Vicsek, Tamás

Abstract

We consider the patterns of collective motion emerging when many aligning, self-propelling units move in two dimensions while interacting through a repulsive potential and are also subject to delays and random perturbations. In this approach, delay plays the role analogous to reaction time so that a given particle is influenced by the information about the velocity and the position of the other particles in its vicinity with some time delay. To get insight into the involved complex flows and the transitions between them we use a simple model allowing – by fine-tuning of its few parameters – the observation and analysis of behaviours that are less accessible by experiments or analytic calculations and at the same time make the reproduction of experimental results possible. We report for the first time about a transition from fully ordered, polarized collective motion to disorder as a function of the increasing time delay. For a fixed intermediate value of the delay, a similar transition (from order to disorder) is obtained as the repulsion radius is increased. Our simulations show a transition from total polarization to two kinds of states: fully disordered and a kind of state which is a mixture of patches of fully disordered motion in the background of orderly moving other particles. The transition occurs as the delay time is increased and is sharp, indicating that the nature of this order–disorder transition is either of first-order or is described by a sharply decreasing linear function. Our model is a simplified version of a practical situation of quickly growing interest because time delays are expected to play an increasingly important role when the traffic of many, densely distributed autonomous drones will move around in a quasi-two-dimensional air space.

Suggested Citation

  • Pakpour, Fatemeh & Vicsek, Tamás, 2024. "Delay-induced phase transitions in active matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
  • Handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010087
    DOI: 10.1016/j.physa.2023.129453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123010087
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Robert E. Chandler & Robert Herman & Elliott W. Montroll, 1958. "Traffic Dynamics: Studies in Car Following," Operations Research, INFORMS, vol. 6(2), pages 165-184, April.
    3. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    4. Xiangzun Wang & Pin-Chuan Chen & Klaus Kroy & Viktor Holubec & Frank Cichos, 2023. "Spontaneous vortex formation by microswimmers with retarded attractions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Máté Nagy & Zsuzsa Ákos & Dora Biro & Tamás Vicsek, 2010. "Hierarchical group dynamics in pigeon flocks," Nature, Nature, vol. 464(7290), pages 890-893, April.
    6. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    2. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    3. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    5. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    6. Yandong Xiao & Chuliang Song & Liang Tian & Yang-Yu Liu, 2019. "Accelerating The Emergence Of Order In Swarming Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-12, December.
    7. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2011. "Collection, spillback, and dissipation in pedestrian evacuation: A network-based method," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 490-506, March.
    8. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Mathew Titus & George Hagstrom & James R Watson, 2021. "Unsupervised manifold learning of collective behavior," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-20, February.
    10. Milad Haghani & Majid Sarvi & Zahra Shahhoseini & Maik Boltes, 2016. "How Simple Hypothetical-Choice Experiments Can Be Utilized to Learn Humans’ Navigational Escape Decisions in Emergencies," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-24, November.
    11. William L Romey & Alicia R Lamb, 2015. "Flash Expansion Threshold in Whirligig Swarms," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    12. Rajnesh K Mudaliar & Timothy M Schaerf, 2020. "Examination of an averaging method for estimating repulsion and attraction interactions in moving groups," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-28, December.
    13. Lima, J.A. & Schimit, P.H.T., 2023. "A model for herd behaviour based on a spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    14. Yude Fu & Jing Zhu & Xiang Li & Xu Han & Wenhui Tan & Qizi Huangpeng & Xiaojun Duan, 2024. "Research on Group Behavior Modeling and Individual Interaction Modes with Informed Leaders," Mathematics, MDPI, vol. 12(8), pages 1-23, April.
    15. Jing Han & Lin Wang, 2013. "Nondestructive Intervention to Multi-Agent Systems through an Intelligent Agent," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    16. Yi, Wenfeng & Wu, Wenhan & Li, Jinghai & Wang, Xiaolu & Zheng, Xiaoping, 2022. "An extended queueing model based on vision and morality for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    17. Syed, Ahmed & Thampi, Sumesh P. & Panchagnula, Mahesh V., 2022. "Order-stampede transitions in human crowds: The role of individualistic and cooperative forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    18. Li Jiang & Luca Giuggioli & Andrea Perna & Ramón Escobedo & Valentin Lecheval & Clément Sire & Zhangang Han & Guy Theraulaz, 2017. "Identifying influential neighbors in animal flocking," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-32, November.
    19. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    20. Choi, Gahyun & Park, Kwangyeol & Yi, Eojin & Ahn, Kwangwon, 2023. "Price fairness: Clean energy stocks and the overall market," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.