Spontaneous vortex formation by microswimmers with retarded attractions
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-35427-7
Download full text from publisher
References listed on IDEAS
- Michel Fruchart & Ryo Hanai & Peter B. Littlewood & Vincenzo Vitelli, 2021. "Non-reciprocal phase transitions," Nature, Nature, vol. 592(7854), pages 363-369, April.
- Daiki Nishiguchi & Igor S Aranson & Alexey Snezhko & Andrey Sokolov, 2018. "Engineering bacterial vortex lattice via direct laser lithography," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
- Kevin P. O’Keeffe & Hyunsuk Hong & Steven H. Strogatz, 2017. "Oscillators that sync and swarm," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
- Jonas Cremer & Tomoya Honda & Ying Tang & Jerome Wong-Ng & Massimo Vergassola & Terence Hwa, 2019. "Chemotaxis as a navigation strategy to boost range expansion," Nature, Nature, vol. 575(7784), pages 658-663, November.
- Utsab Khadka & Viktor Holubec & Haw Yang & Frank Cichos, 2018. "Active particles bound by information flows," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
- Tobias Bäuerle & Robert C. Löffler & Clemens Bechinger, 2020. "Formation of stable and responsive collective states in suspensions of active colloids," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
- Daiki Nishiguchi & Igor S. Aranson & Alexey Snezhko & Andrey Sokolov, 2018. "Publisher Correction: Engineering bacterial vortex lattice via direct laser lithography," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiangzun Wang & Frank Cichos, 2024. "Harnessing synthetic active particles for physical reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Pakpour, Fatemeh & Vicsek, Tamás, 2024. "Delay-induced phase transitions in active matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guy Amichay & Liang Li & Máté Nagy & Iain D. Couzin, 2024. "Revealing the mechanism and function underlying pairwise temporal coupling in collective motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Xiangzun Wang & Frank Cichos, 2024. "Harnessing synthetic active particles for physical reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Maxime Hubert & Stéphane Perrard & Nicolas Vandewalle & Matthieu Labousse, 2022. "Overload wave-memory induces amnesia of a self-propelled particle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Carballosa, Alejandro & Muñuzuri, Alberto P., 2022. "Intermittency regimes of poorly-mixed chemical oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Jyoti Prasad Banerjee & Rituparno Mandal & Deb Sankar Banerjee & Shashi Thutupalli & Madan Rao, 2022. "Unjamming and emergent nonreciprocity in active ploughing through a compressible viscoelastic fluid," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Martorell, Carles & Calvo, Rubén & Annibale, Alessia & Muñoz, Miguel A., 2024. "Dynamically selected steady states and criticality in non-reciprocal networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Yang, Huijie & Zhang, Jie & Small, Michael, 2023. "Synchronization of multiple mobile reservoir computing oscillators in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Gaurav Gardi & Steven Ceron & Wendong Wang & Kirstin Petersen & Metin Sitti, 2022. "Microrobot collectives with reconfigurable morphologies, behaviors, and functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Michael Riedl & Isabelle Mayer & Jack Merrin & Michael Sixt & Björn Hof, 2023. "Synchronization in collectively moving inanimate and living active matter," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Fariello, Ricardo & de Aguiar, Marcus A.M., 2024. "Exploring the phase diagrams of multidimensional Kuramoto models," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
- Minati, Ludovico & Innocenti, Giacomo & Mijatovic, Gorana & Ito, Hiroyuki & Frasca, Mattia, 2022. "Mechanisms of chaos generation in an atypical single-transistor oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Hilary Monaco & Kevin S. Liu & Tiago Sereno & Maxime Deforet & Bradford P. Taylor & Yanyan Chen & Caleb C. Reagor & Joao B. Xavier, 2022. "Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Ling, Xiang & Liu, Qing-Yang & Hua, Xia & Zhu, Kong-Jin & Guo, Ning & Chen, Jia-Jia, 2023. "The spatial group and cyclic oscillations caused by the power correlation between the moving direction and the phase of a moving oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
- Wu, Zihua & Zhang, Yinxing & Bao, Han & Lan, Rushi & Hua, Zhongyun, 2024. "nD-CS: A circularly shifting chaotic map generation method," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
- Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Xu, Jin & Yang, Huijie, 2023. "Multiple moving agents on complex networks: From intermittent synchronization to complete synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
- Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Dai, X. & Kovalenko, K. & Molodyk, M. & Wang, Z. & Li, X. & Musatov, D. & Raigorodskii, A.M. & Alfaro-Bittner, K. & Cooper, G.D. & Bianconi, G. & Boccaletti, S., 2021. "D-dimensional oscillators in simplicial structures: Odd and even dimensions display different synchronization scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
- Ansarinasab, Sheida & Nazarimehr, Fahimeh & Ghassemi, Farnaz & Ghosh, Dibakar & Jafari, Sajad, 2024. "Spatial dynamics of swarmalators’ movements," Applied Mathematics and Computation, Elsevier, vol. 468(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35427-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.