IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v623y2023ics0378437123004521.html
   My bibliography  Save this article

A model for herd behaviour based on a spatial public goods game

Author

Listed:
  • Lima, J.A.
  • Schimit, P.H.T.

Abstract

In groups and crowds, individuals have a propensity to replicate the actions of their immediate neighbours, often disregarding rational considerations. This phenomenon is known as herd behaviour, which has been extensively investigated in biological and economic contexts to comprehend the dynamics of fragile systems. Examples of herd behaviour scenarios include the bubble effect in the stock market, animal coordination, and individuals congregating together during emergency situations to avert peril. The understanding of the underlying causes and consequences of individual decision-making in crowd dynamics can mitigate the negative outcomes of these situations. Consequently, models are utilized to propose effective stock market controls and design emergency exits that enable swift responses to crises. This paper presents a spatial game that induces a level of herding in the population, whereby a multiplayer public good game serves as the platform for interaction among individuals. Herding behaviour arises when individuals shift from emulating the most successful strategy to copying the predominant strategy in their neighbourhood. The objective of the game is to investigate how the induced level of herding and the return on investment affect the total wealth, wealth distribution, and level of cooperation in the population. In summary, when herd behaviour is more prevalent, it leads to reduced cooperation and increased wealth inequality. Nonetheless, the outcome is contingent on the initial concentration of states in the simulation.

Suggested Citation

  • Lima, J.A. & Schimit, P.H.T., 2023. "A model for herd behaviour based on a spatial public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
  • Handle: RePEc:eee:phsmap:v:623:y:2023:i:c:s0378437123004521
    DOI: 10.1016/j.physa.2023.128897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123004521
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Chris T Bauch & Samit Bhattacharyya, 2012. "Evolutionary Game Theory and Social Learning Can Determine How Vaccine Scares Unfold," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-12, April.
    3. Fischbacher, Urs & Gachter, Simon & Fehr, Ernst, 2001. "Are people conditionally cooperative? Evidence from a public goods experiment," Economics Letters, Elsevier, vol. 71(3), pages 397-404, June.
    4. Rand, David Gertler & Dreber, Anna & Fudenberg, Drew & Ellingson, Tore & Nowak, Martin A., 2009. "Positive Interactions Promote Public Cooperation," Scholarly Articles 3804483, Harvard University Department of Economics.
    5. Devenow, Andrea & Welch, Ivo, 1996. "Rational herding in financial economics," European Economic Review, Elsevier, vol. 40(3-5), pages 603-615, April.
    6. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    7. Zhou, Qi & Sun, Shaolong & Liu, Qian, 2019. "The capital flow of stock market studies based on epidemic model with double delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    8. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    9. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    10. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    11. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    2. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    3. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    4. Miquel Montero, 2021. "Predator–prey model for stock market fluctuations," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(1), pages 29-57, January.
    5. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    6. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    7. Zou, Baobao & Lu, Chunxia & Mao, Shirong & Li, Yi, 2020. "Effect of pedestrian judgement on evacuation efficiency considering hesitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    8. Tian, Huan-huan & Wei, Yan-fang & Dong, Li-yun & Xue, Yu & Zheng, Rong-sen, 2018. "Resolution of conflicts in cellular automaton evacuation model with the game-theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 991-1006.
    9. Cheng, Yuan & Zheng, Xiaoping, 2018. "Emergence of cooperation during an emergency evacuation," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 485-494.
    10. Ghonghadze, Jaba & Lux, Thomas, 2016. "Bringing an elementary agent-based model to the data: Estimation via GMM and an application to forecasting of asset price volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 1-19.
    11. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    12. Yu, Tao & Wang, Shanshan & Xu, Hai-Hong & Yang, Hai-Dong, 2023. "Simulation of multidirectional crossing pedestrian flows: An extended cell transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    13. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    14. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    15. Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
    16. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    17. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    18. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    19. Dickinson, David L. & Masclet, David & Villeval, Marie Claire, 2015. "Norm enforcement in social dilemmas: An experiment with police commissioners," Journal of Public Economics, Elsevier, vol. 126(C), pages 74-85.
    20. Paton Pak Chun Yam & Gary Ting Tat Ng & Wing Tung Au & Lin Tao & Su Lu & Hildie Leung & Jane M Y Fung, 2018. "The effect of subgroup homogeneity of efficacy on contribution in public good dilemmas," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:623:y:2023:i:c:s0378437123004521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.