IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002449.html
   My bibliography  Save this article

Dynamical Modeling of Collective Behavior from Pigeon Flight Data: Flock Cohesion and Dispersion

Author

Listed:
  • Graciano Dieck Kattas
  • Xiao-Ke Xu
  • Michael Small

Abstract

Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred. Author Summary: The construction of mathematical models from experimental time-series data has been considered with some success in many areas of science and engineering, using the power of computer algorithms to build model structures and suitably tuning their parameters. When considering complex systems with nonlinear or collective behavior, computational models built from real data are the alternative to emulating the system as best as possible, since classic modeling approaches based on observation could prove difficult for complex dynamics. In this study, we provide a method to build models of collective dynamics from homing pigeon flight data. We show that our models follow the source dynamics well, and from them we are able to infer that significant collective behavior occurs in pigeon flights. Our results are consistent with the basic principles of previous hypotheses and models that have been proposed. Our approach serves as an initial outline towards the usage of experimental data to construct computational models to understand many complex phenomena with hypothesized collective behavior.

Suggested Citation

  • Graciano Dieck Kattas & Xiao-Ke Xu & Michael Small, 2012. "Dynamical Modeling of Collective Behavior from Pigeon Flight Data: Flock Cohesion and Dispersion," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
  • Handle: RePEc:plo:pcbi00:1002449
    DOI: 10.1371/journal.pcbi.1002449
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002449
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002449&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Máté Nagy & Zsuzsa Ákos & Dora Biro & Tamás Vicsek, 2010. "Hierarchical group dynamics in pigeon flocks," Nature, Nature, vol. 464(7290), pages 890-893, April.
    2. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    3. Anders Eriksson & Martin Nilsson Jacobi & Johan Nyström & Kolbjørn Tunstrøm, 2010. "Determining interaction rules in animal swarms," Behavioral Ecology, International Society for Behavioral Ecology, vol. 21(5), pages 1106-1111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Komareji & Roland Bouffanais, 2013. "Resilience and Controllability of Dynamic Collective Behaviors," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert B Kao & Noam Miller & Colin Torney & Andrew Hartnett & Iain D Couzin, 2014. "Collective Learning and Optimal Consensus Decisions in Social Animal Groups," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-11, August.
    2. Mohammad Komareji & Roland Bouffanais, 2013. "Resilience and Controllability of Dynamic Collective Behaviors," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-15, December.
    3. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    4. Roy Harpaz & Minh Nguyet Nguyen & Armin Bahl & Florian Engert, 2021. "Precise visuomotor transformations underlying collective behavior in larval zebrafish," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Li, Qing & Zhang, Lingwei & Jia, Yongnan & Lu, Tianzhao & Chen, Xiaojie, 2022. "Modeling, analysis, and optimization of three-dimensional restricted visual field metric-free swarms," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Panpan Yang & Maode Yan & Jiacheng Song & Ye Tang, 2019. "Self-Organized Fission-Fusion Control Algorithm for Flocking Systems Based on Intermittent Selective Interaction," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    7. Kong, Decheng & Xue, Kai & Wang, Ping, 2024. "Collective queuing motion of self-propelled particles with leadership and experience," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    8. Pakpour, Fatemeh & Vicsek, Tamás, 2024. "Delay-induced phase transitions in active matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    9. Yandong Xiao & Chuliang Song & Liang Tian & Yang-Yu Liu, 2019. "Accelerating The Emergence Of Order In Swarming Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-12, December.
    10. Yude Fu & Jing Zhu & Xiang Li & Xu Han & Wenhui Tan & Qizi Huangpeng & Xiaojun Duan, 2024. "Research on Group Behavior Modeling and Individual Interaction Modes with Informed Leaders," Mathematics, MDPI, vol. 12(8), pages 1-23, April.
    11. Li Jiang & Luca Giuggioli & Andrea Perna & Ramón Escobedo & Valentin Lecheval & Clément Sire & Zhangang Han & Guy Theraulaz, 2017. "Identifying influential neighbors in animal flocking," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-32, November.
    12. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    13. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    14. Long-Hai Wang & Alexander Ulrich Ernst & Duo An & Ashim Kumar Datta & Boris Epel & Mrignayani Kotecha & Minglin Ma, 2021. "A bioinspired scaffold for rapid oxygenation of cell encapsulation systems," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    15. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    16. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    17. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    18. Carlo Bianca & Marco Menale, 2019. "A Convergence Theorem for the Nonequilibrium States in the Discrete Thermostatted Kinetic Theory," Mathematics, MDPI, vol. 7(8), pages 1-13, July.
    19. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    20. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.