IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0243631.html
   My bibliography  Save this article

Examination of an averaging method for estimating repulsion and attraction interactions in moving groups

Author

Listed:
  • Rajnesh K Mudaliar
  • Timothy M Schaerf

Abstract

Groups of animals coordinate remarkable, coherent, movement patterns during periods of collective motion. Such movement patterns include the toroidal mills seen in fish shoals, highly aligned parallel motion like that of flocks of migrating birds, and the swarming of insects. Since the 1970’s a wide range of collective motion models have been studied that prescribe rules of interaction between individuals, and that are capable of generating emergent patterns that are visually similar to those seen in real animal group. This does not necessarily mean that real animals apply exactly the same interactions as those prescribed in models. In more recent work, researchers have sought to infer the rules of interaction of real animals directly from tracking data, by using a number of techniques, including averaging methods. In one of the simplest formulations, the averaging methods determine the mean changes in the components of the velocity of an individual over time as a function of the relative coordinates of group mates. The averaging methods can also be used to estimate other closely related quantities including the mean relative direction of motion of group mates as a function of their relative coordinates. Since these methods for extracting interaction rules and related quantities from trajectory data are relatively new, the accuracy of these methods has had limited inspection. In this paper, we examine the ability of an averaging method to reveal prescribed rules of interaction from data generated by two individual based models for collective motion. Our work suggests that an averaging method can capture the qualitative features of underlying interactions from trajectory data alone, including repulsion and attraction effects evident in changes in speed and direction of motion, and the presence of a blind zone. However, our work also illustrates that the output from a simple averaging method can be affected by emergent group level patterns of movement, and the sizes of the regions over which repulsion and attraction effects are apparent can be distorted depending on how individuals combine interactions with multiple group mates.

Suggested Citation

  • Rajnesh K Mudaliar & Timothy M Schaerf, 2020. "Examination of an averaging method for estimating repulsion and attraction interactions in moving groups," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-28, December.
  • Handle: RePEc:plo:pone00:0243631
    DOI: 10.1371/journal.pone.0243631
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243631
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0243631&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0243631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Iain D. Couzin & Jens Krause & Nigel R. Franks & Simon A. Levin, 2005. "Effective leadership and decision-making in animal groups on the move," Nature, Nature, vol. 433(7025), pages 513-516, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    2. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    3. Milad Haghani & Majid Sarvi & Zahra Shahhoseini & Maik Boltes, 2016. "How Simple Hypothetical-Choice Experiments Can Be Utilized to Learn Humans’ Navigational Escape Decisions in Emergencies," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-24, November.
    4. Pakpour, Fatemeh & Vicsek, Tamás, 2024. "Delay-induced phase transitions in active matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    5. William L Romey & Alicia R Lamb, 2015. "Flash Expansion Threshold in Whirligig Swarms," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    6. Jing Han & Lin Wang, 2013. "Nondestructive Intervention to Multi-Agent Systems through an Intelligent Agent," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    7. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2011. "Collection, spillback, and dissipation in pedestrian evacuation: A network-based method," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 490-506, March.
    8. Yi, Wenfeng & Wu, Wenhan & Li, Jinghai & Wang, Xiaolu & Zheng, Xiaoping, 2022. "An extended queueing model based on vision and morality for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    9. Syed, Ahmed & Thampi, Sumesh P. & Panchagnula, Mahesh V., 2022. "Order-stampede transitions in human crowds: The role of individualistic and cooperative forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    10. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    11. Stock, Eduardo Velasco & da Silva, Roberto, 2023. "Lattice gas model to describe a nightclub dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    13. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    14. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    15. Long-Hai Wang & Alexander Ulrich Ernst & Duo An & Ashim Kumar Datta & Boris Epel & Mrignayani Kotecha & Minglin Ma, 2021. "A bioinspired scaffold for rapid oxygenation of cell encapsulation systems," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    16. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    17. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    18. Richard P Mann, 2011. "Bayesian Inference for Identifying Interaction Rules in Moving Animal Groups," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-10, August.
    19. Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
    20. Illés J Farkas & Shuohong Wang, 2018. "Spatial flocking: Control by speed, distance, noise and delay," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-12, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0243631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.