IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v634y2024ics0378437123010075.html
   My bibliography  Save this article

Remark on the entropy production of adaptive run-and-tumble chemotaxis

Author

Listed:
  • Nguyen, Minh D.N.
  • Pham, Phuc H.
  • Ngo, Khang V.
  • Do, Van H.
  • Li, Shengkai
  • Phan, Trung V.

Abstract

Chemotactic active particles, such as bacteria and cells, exhibit an adaptive run-and-tumble motion, giving rise to complex emergent behaviors in response to external chemical fields. This motion is generated by the conversion of internal chemical energy into self-propulsion, allowing each agent to sustain a steady-state far from thermal equilibrium and perform works. The rate of entropy production serves as an indicates of how extensive these agents operate away from thermal equilibrium, providing a measure for estimating maximum obtainable power. Here we present the general framework for calculating the entropy production rate created by such population of agents from the first principle, using the minimal model of bacterial adaptive chemotaxis, as they execute the most basic collective action — the mass transport.

Suggested Citation

  • Nguyen, Minh D.N. & Pham, Phuc H. & Ngo, Khang V. & Do, Van H. & Li, Shengkai & Phan, Trung V., 2024. "Remark on the entropy production of adaptive run-and-tumble chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
  • Handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010075
    DOI: 10.1016/j.physa.2023.129452
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123010075
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Fruchart & Ryo Hanai & Peter B. Littlewood & Vincenzo Vitelli, 2021. "Non-reciprocal phase transitions," Nature, Nature, vol. 592(7854), pages 363-369, April.
    2. Gaszton Vizsnyiczai & Giacomo Frangipane & Claudio Maggi & Filippo Saglimbeni & Silvio Bianchi & Roberto Di Leonardo, 2017. "Light controlled 3D micromotors powered by bacteria," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    3. Tapomoy Bhattacharjee & Sujit S. Datta, 2019. "Bacterial hopping and trapping in porous media," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Marc Z. Miskin & Alejandro J. Cortese & Kyle Dorsey & Edward P. Esposito & Michael F. Reynolds & Qingkun Liu & Michael Cao & David A. Muller & Paul L. McEuen & Itai Cohen, 2020. "Electronically integrated, mass-manufactured, microscopic robots," Nature, Nature, vol. 584(7822), pages 557-561, August.
    5. Junjiajia Long & Steven W Zucker & Thierry Emonet, 2017. "Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-25, March.
    6. X. Fu & S. Kato & J. Long & H. H. Mattingly & C. He & D. C. Vural & S. W. Zucker & T. Emonet, 2018. "Spatial self-organization resolves conflicts between individuality and collective migration," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shijing Zhang & Yingxiang Liu & Jie Deng & Xiang Gao & Jing Li & Weiyi Wang & Mingxin Xun & Xuefeng Ma & Qingbing Chang & Junkao Liu & Weishan Chen & Jie Zhao, 2023. "Piezo robotic hand for motion manipulation from micro to macro," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Mark A. B. Kreutzberger & Richard C. Sobe & Amber B. Sauder & Sharanya Chatterjee & Alejandro Peña & Fengbin Wang & Jorge A. Giron & Volker Kiessling & Tiago R. D. Costa & Vincent P. Conticello & Gad , 2022. "Flagellin outer domain dimerization modulates motility in pathogenic and soil bacteria from viscous environments," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Jyoti Prasad Banerjee & Rituparno Mandal & Deb Sankar Banerjee & Shashi Thutupalli & Madan Rao, 2022. "Unjamming and emergent nonreciprocity in active ploughing through a compressible viscoelastic fluid," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Nathan Ronceray & Massimo Spina & Vanessa Hui Yin Chou & Chwee Teck Lim & Andre K. Geim & Slaven Garaj, 2024. "Elastocapillarity-driven 2D nano-switches enable zeptoliter-scale liquid encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Xiangzun Wang & Pin-Chuan Chen & Klaus Kroy & Viktor Holubec & Frank Cichos, 2023. "Spontaneous vortex formation by microswimmers with retarded attractions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Paula Villa Martín & Miguel A Muñoz & Simone Pigolotti, 2019. "Bet-hedging strategies in expanding populations," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-17, April.
    10. Christina Kurzthaler & Suvendu Mandal & Tapomoy Bhattacharjee & Hartmut Löwen & Sujit S. Datta & Howard A. Stone, 2021. "A geometric criterion for the optimal spreading of active polymers in porous media," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Helena Massana-Cid & Claudio Maggi & Giacomo Frangipane & Roberto Di Leonardo, 2022. "Rectification and confinement of photokinetic bacteria in an optical feedback loop," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Minghui Tan & Pan Tian & Qian Zhang & Guiqiang Zhu & Yuchen Liu & Mengjiao Cheng & Feng Shi, 2022. "Self-sorting in macroscopic supramolecular self-assembly via additive effects of capillary and magnetic forces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Jiang Yan & Ying Zhang & Zongguang Liu & Junzhuan Wang & Jun Xu & Linwei Yu, 2023. "Ultracompact single-nanowire-morphed grippers driven by vectorial Lorentz forces for dexterous robotic manipulations," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Mingchao Zhang & Yohan Lee & Zhiqiang Zheng & Muhammad Turab Ali Khan & Xianglong Lyu & Junghwan Byun & Harald Giessen & Metin Sitti, 2023. "Micro- and nanofabrication of dynamic hydrogels with multichannel information," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Sean Lim & Xiaokan Guo & James Q Boedicker, 2019. "Connecting single-cell properties to collective behavior in multiple wild isolates of the Enterobacter cloacae complex," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
    18. Joel W. Newbolt & Nickolas Lewis & Mathilde Bleu & Jiajie Wu & Christiana Mavroyiakoumou & Sophie Ramananarivo & Leif Ristroph, 2024. "Flow interactions lead to self-organized flight formations disrupted by self-amplifying waves," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Jing Fan Yang & Thomas A. Berrueta & Allan M. Brooks & Albert Tianxiang Liu & Ge Zhang & David Gonzalez-Medrano & Sungyun Yang & Volodymyr B. Koman & Pavel Chvykov & Lexy N. LeMar & Marc Z. Miskin & T, 2022. "Emergent microrobotic oscillators via asymmetry-induced order," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:634:y:2024:i:c:s0378437123010075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.