IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04539-4.html
   My bibliography  Save this article

Spatial self-organization resolves conflicts between individuality and collective migration

Author

Listed:
  • X. Fu

    (Yale University
    Chinese Academy of Sciences)

  • S. Kato

    (Yale University
    Hiroshima University, Higashi-Hiroshima)

  • J. Long

    (Yale University
    Yale University)

  • H. H. Mattingly

    (Yale University)

  • C. He

    (Chinese Academy of Sciences)

  • D. C. Vural

    (Yale University
    University of Notre Dame)

  • S. W. Zucker

    (Yale University
    Yale University)

  • T. Emonet

    (Yale University
    Yale University)

Abstract

Collective behavior can spontaneously emerge when individuals follow common rules of interaction. However, the behavior of each individual differs due to existing genetic and non-genetic variation within the population. It remains unclear how this individuality is managed to achieve collective behavior. We quantify individuality in bands of clonal Escherichia coli cells that migrate collectively along a channel by following a self-generated gradient of attractant. We discover that despite substantial differences in individual chemotactic abilities, the cells are able to migrate as a coherent group by spontaneously sorting themselves within the moving band. This sorting mechanism ensures that differences between individual chemotactic abilities are compensated by differences in the local steepness of the traveling gradient each individual must navigate, and determines the minimum performance required to travel with the band. By resolving conflicts between individuality and collective migration, this mechanism enables populations to maintain advantageous diversity while on the move.

Suggested Citation

  • X. Fu & S. Kato & J. Long & H. H. Mattingly & C. He & D. C. Vural & S. W. Zucker & T. Emonet, 2018. "Spatial self-organization resolves conflicts between individuality and collective migration," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04539-4
    DOI: 10.1038/s41467-018-04539-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04539-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04539-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paula Villa Martín & Miguel A Muñoz & Simone Pigolotti, 2019. "Bet-hedging strategies in expanding populations," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-17, April.
    2. Nguyen, Minh D.N. & Pham, Phuc H. & Ngo, Khang V. & Do, Van H. & Li, Shengkai & Phan, Trung V., 2024. "Remark on the entropy production of adaptive run-and-tumble chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    3. Sean Lim & Xiaokan Guo & James Q Boedicker, 2019. "Connecting single-cell properties to collective behavior in multiple wild isolates of the Enterobacter cloacae complex," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04539-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.