IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31984-z.html
   My bibliography  Save this article

Unjamming and emergent nonreciprocity in active ploughing through a compressible viscoelastic fluid

Author

Listed:
  • Jyoti Prasad Banerjee

    (Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR))

  • Rituparno Mandal

    (Institute for Theoretical Physics, Georg-August-Universität Göttingen)

  • Deb Sankar Banerjee

    (Carnegie Mellon University)

  • Shashi Thutupalli

    (Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR)
    International Centre for Theoretical Sciences (TIFR))

  • Madan Rao

    (Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR))

Abstract

A dilute suspension of active Brownian particles in a dense compressible viscoelastic fluid, forms a natural setting to study the emergence of nonreciprocity during a dynamical phase transition. At these densities, the transport of active particles is strongly influenced by the passive medium and shows a dynamical jamming transition as a function of activity and medium density. In the process, the compressible medium is actively churned up – for low activity, the active particle gets self-trapped in a cavity of its own making, while for large activity, the active particle ploughs through the medium, either accompanied by a moving anisotropic wake, or leaving a porous trail. A hydrodynamic approach makes it evident that the active particle generates a long-range density wake which breaks fore-aft symmetry, consistent with the simulations. Accounting for the back-reaction of the compressible medium leads to (i) dynamical jamming of the active particle, and (ii) a dynamical non-reciprocal attraction between two active particles moving along the same direction, with the trailing particle catching up with the leading one in finite time. We emphasize that these nonreciprocal effects appear only when the active particles are moving and so manifest in the vicinity of the jamming-unjamming transition.

Suggested Citation

  • Jyoti Prasad Banerjee & Rituparno Mandal & Deb Sankar Banerjee & Shashi Thutupalli & Madan Rao, 2022. "Unjamming and emergent nonreciprocity in active ploughing through a compressible viscoelastic fluid," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31984-z
    DOI: 10.1038/s41467-022-31984-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31984-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31984-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rituparno Mandal & Pranab Jyoti Bhuyan & Pinaki Chaudhuri & Chandan Dasgupta & Madan Rao, 2020. "Extreme active matter at high densities," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Michel Fruchart & Ryo Hanai & Peter B. Littlewood & Vincenzo Vitelli, 2021. "Non-reciprocal phase transitions," Nature, Nature, vol. 592(7854), pages 363-369, April.
    3. Ran Ni & Martien A. Cohen Stuart & Marjolein Dijkstra, 2013. "Pushing the glass transition towards random close packing using self-propelled hard spheres," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristóvão S. Dias & Manish Trivedi & Giovanni Volpe & Nuno A. M. Araújo & Giorgio Volpe, 2023. "Environmental memory boosts group formation of clueless individuals," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Rituparno Mandal & Corneel Casert & Peter Sollich, 2022. "Robust prediction of force chains in jammed solids using graph neural networks," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Xiangzun Wang & Pin-Chuan Chen & Klaus Kroy & Viktor Holubec & Frank Cichos, 2023. "Spontaneous vortex formation by microswimmers with retarded attractions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. C.N., Sachin & Joy, Ashwin, 2023. "Configurational entropy of self-propelled glass formers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    6. C.N., Sachin & Joy, Ashwin, 2022. "Entropy scaling laws in self propelled glass formers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    7. Nguyen, Minh D.N. & Pham, Phuc H. & Ngo, Khang V. & Do, Van H. & Li, Shengkai & Phan, Trung V., 2024. "Remark on the entropy production of adaptive run-and-tumble chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    8. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Joel W. Newbolt & Nickolas Lewis & Mathilde Bleu & Jiajie Wu & Christiana Mavroyiakoumou & Sophie Ramananarivo & Leif Ristroph, 2024. "Flow interactions lead to self-organized flight formations disrupted by self-amplifying waves," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31984-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.