IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v575y2021ics0378437121003307.html
   My bibliography  Save this article

Driver lane change intention recognition in the connected environment

Author

Listed:
  • Guo, Yingshi
  • Zhang, Hongjia
  • Wang, Chang
  • Sun, Qinyu
  • Li, Wanmin

Abstract

The connected environment provides information on surrounding traffic and areas beyond the visual range to improve driving behavior and avoid dangerous incidents. However, due to the novelty of the connected environment and the scarcity of connected data, current research on driver lane change intention in this field has received little attention. In this work, we designed a typical lane change scenario in the connected environment based on a driving simulator and real-time collection of multi-modal data from eye trackers, driving simulators, and a connected platform. The driver’s eye movement, head rotation, vehicle movement, and the driver’s maneuver parameters were analyzed, revealing a significant difference between the lane change intention and lane keep stages in the connected environment. In addition, the length of the intention time window with connected information (6.5 s) was longer than that without connected information (4 s). The bi-directional long and short-term memory network based on the attention mechanism (AT-BiLSTM) was used to establish a lane change intention model. The accuracy of the lane change intention model based on the proposed AT-BiLSTM algorithm surpassed that of existing machine learning algorithms. The recognition accuracy of the lane change intention model was 93.33% at 3 s prior to the lane change. The conclusions of this study are of great significance for the development of a side warning assist system in future connected environments.

Suggested Citation

  • Guo, Yingshi & Zhang, Hongjia & Wang, Chang & Sun, Qinyu & Li, Wanmin, 2021. "Driver lane change intention recognition in the connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
  • Handle: RePEc:eee:phsmap:v:575:y:2021:i:c:s0378437121003307
    DOI: 10.1016/j.physa.2021.126057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121003307
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Applications of wavelet transform for analysis of freeway traffic: Bottlenecks, transient traffic, and traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 372-384, February.
    2. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    4. Li, Xiang & Sun, Jian-Qiao, 2017. "Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 41-58.
    5. Li, Linheng & Gan, Jing & Zhou, Kun & Qu, Xu & Ran, Bin, 2020. "A novel lane-changing model of connected and automated vehicles: Using the safety potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongfeng Ma & Zhuopeng Xie & Shuyan Chen & Ying Wu & Fengxiang Qiao, 2021. "Real-Time Driving Behavior Identification Based on Multi-Source Data Fusion," IJERPH, MDPI, vol. 19(1), pages 1-14, December.
    2. Wang, Lichao & Yang, Min & Li, Ye & Hou, Yiqi, 2022. "A model of lane-changing intention induced by deceleration frequency in an automatic driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Yuan, Renteng & Abdel-Aty, Mohamed & Gu, Xin & Zheng, Ou & Xiang, Qiaojun, 2023. "A unified modeling framework for lane change intention recognition and vehicle status prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    4. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Tianyi & Shi, Xiupeng & Wong, Yiik Diew, 2021. "A lane-changing risk profile analysis method based on time-series clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    3. Saifuzzaman, Mohammad & Zheng, Zuduo & Haque, Md. Mazharul & Washington, Simon, 2017. "Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 523-538.
    4. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    5. Jiang, Yangsheng & Tan, Li & Xiao, Guosheng & Wu, Yunxia & Yao, Zhihong, 2024. "Platoon-aware cooperative lane-changing strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    6. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    7. Wang, Lichao & Yang, Min & Li, Ye & Hou, Yiqi, 2022. "A model of lane-changing intention induced by deceleration frequency in an automatic driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    8. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    9. Fu, Chuanyun & Lu, Zhaoyou & Ding, Naikan & Bai, Wei, 2024. "Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    10. He, Jia & Huang, Hai-Jun & Yang, Hai & Tang, Tie-Qiao, 2017. "An electric vehicle driving behavior model in the traffic system with a wireless charging lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 119-126.
    11. Li, Linheng & An, Bocheng & Wang, Zhiyu & Gan, Jing & Qu, Xu & Ran, Bin, 2024. "Stability analysis and numerical simulation of a car-following model considering safety potential field and V2X communication: A focus on influence weight of multiple vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    12. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish & Haque, Md. Mazharul, 2019. "Modelling car-following behaviour of connected vehicles with a focus on driver compliance," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 256-279.
    13. Zheng, Zuduo & Su, Dongcai, 2016. "Traffic state estimation through compressed sensing and Markov random field," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 525-554.
    14. Tian, Junfang & Jiang, Rui & Jia, Bin & Gao, Ziyou & Ma, Shoufeng, 2016. "Empirical analysis and simulation of the concave growth pattern of traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 338-354.
    15. Zhufei Huang & Zihan Zhang & Haijian Li & Lingqiao Qin & Jian Rong, 2019. "Determining Appropriate Lane-Changing Spacing for Off-Ramp Areas of Urban Expressways," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    16. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    17. Xu, Tu & Laval, Jorge, 2020. "Statistical inference for two-regime stochastic car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 210-228.
    18. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    19. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    20. He, Zhengbing, 2021. "Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 152-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:575:y:2021:i:c:s0378437121003307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.