IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v629y2023ics0378437123007185.html
   My bibliography  Save this article

Revealing traits of phytopathogenic status induced by Xylella Fastidiosa in olive trees by analysing multifractal and informational patterns of MODIS satellite evapotranspiration data

Author

Listed:
  • Telesca, Luciano
  • Abate, Nicodemo
  • Faridani, Farid
  • Lovallo, Michele
  • Lasaponara, Rosa

Abstract

In this work the time variability of MODIS satellite evapotranspiration data was investigated by using the informational Fisher–Shannon analysis and the multifractal detrended fluctuation analysis to reveal the presence of Xylella Fastidiosa in olive trees, a very dangerous phytobacterium capable to induce a severe disease in olive trees, known as olive quick decline syndrome. Several hundred pixels of infected and healthy sites located in southeastern Italy were analysed. Our results suggest that the informational (Fisher Information Measure and Shannon entropy) and multifractal (hq-range, multifractal width W and maximum α0) parameters allow a good discrimination between infected and healthy sites, envisaging the use of the combination of this two methods as an operational tool for early diagnosis of plant deterioration due to the bacterium.

Suggested Citation

  • Telesca, Luciano & Abate, Nicodemo & Faridani, Farid & Lovallo, Michele & Lasaponara, Rosa, 2023. "Revealing traits of phytopathogenic status induced by Xylella Fastidiosa in olive trees by analysing multifractal and informational patterns of MODIS satellite evapotranspiration data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
  • Handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007185
    DOI: 10.1016/j.physa.2023.129163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123007185
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas M. Chaloner & Sarah J. Gurr & Daniel P. Bebber, 2021. "Plant pathogen infection risk tracks global crop yields under climate change," Nature Climate Change, Nature, vol. 11(8), pages 710-715, August.
    2. Cheng, Qing & Liu, Xinyuan & Zhu, Xiaowu, 2019. "Cryptocurrency momentum effect: DFA and MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    3. Kevin Schneider & Wopke van der Werf & Martina Cendoya & Monique Mourits & Juan A. Navas-Cortés & Antonio Vicent & Alfons Oude Lansink, 2020. "Impact of Xylella fastidiosa subspecies pauca in European olives," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(17), pages 9250-9259, April.
    4. Piper D. Wallingford & Toni Lyn Morelli & Jenica M. Allen & Evelyn M. Beaury & Dana M. Blumenthal & Bethany A. Bradley & Jeffrey S. Dukes & Regan Early & Emily J. Fusco & Deborah E. Goldberg & Inés Ib, 2020. "Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts," Nature Climate Change, Nature, vol. 10(5), pages 398-405, May.
    5. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    6. Martin, M.T. & Perez, J. & Plastino, A., 2001. "Fisher information and nonlinear dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 523-532.
    7. Zhou, Yuan-Wu & Liu, Jin-Long & Yu, Zu-Guo & Zhao, Zhi-Qin & Anh, Vo, 2014. "Fractal and complex network analyses of protein molecular dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 21-32.
    8. Ashutosh Chamoli & R. Yadav, 2015. "Multifractality in seismic sequences of NW Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 19-32, May.
    9. Plamen Ch. Ivanov & Luís A. Nunes Amaral & Ary L. Goldberger & Shlomo Havlin & Michael G. Rosenblum & Zbigniew R. Struzik & H. Eugene Stanley, 1999. "Multifractality in human heartbeat dynamics," Nature, Nature, vol. 399(6735), pages 461-465, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
    2. Wu, Yue & Shang, Pengjian & Chen, Shijian, 2019. "Modified multifractal large deviation spectrum based on CID for financial market system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1331-1342.
    3. Jovanovic, Tijana & Mejía, Alfonso & Gall, Heather & Gironás, Jorge, 2016. "Effect of urbanization on the long-term persistence of streamflow records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 208-221.
    4. Xue Pan & Lei Hou & Mutua Stephen & Huijie Yang & Chenping Zhu, 2014. "Evaluation of Scaling Invariance Embedded in Short Time Series," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    5. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    6. Liao, Fuyuan & O’Brien, William D. & Jan, Yih-Kuen, 2013. "Assessing complexity of skin blood flow oscillations in response to locally applied heating and pressure in rats: Implications for pressure ulcer risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4905-4915.
    7. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.
    8. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    9. Maciel, Leandro, 2021. "A new approach to portfolio management in the Brazilian equity market: Does assets efficiency level improve performance?," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 38-56.
    10. Wang, Jian & Jiang, Wenjing & Wu, Xinpei & Yang, Mengdie & Shao, Wei, 2023. "Role of vaccine in fighting the variants of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    11. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    12. Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
    13. Yao, Can-Zhong & Mo, Yi-Na & Zhang, Ze-Kun, 2021. "A study of the efficiency of the Chinese clean energy stock market and its correlation with the crude oil market based on an asymmetric multifractal scaling behavior analysis," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    14. Shrestha, Keshab & Naysary, Babak & Philip, Sheena Sara Suresh, 2023. "Fintech market efficiency: A multifractal detrended fluctuation analysis," Finance Research Letters, Elsevier, vol. 54(C).
    15. Khurshid, Adnan & Khan, Khalid & Cifuentes-Faura, Javier & Chen, Yufeng, 2024. "Asymmetric multifractality: Comparative efficiency analysis of global technological and renewable energy prices using MFDFA and A-MFDFA approaches," Energy, Elsevier, vol. 289(C).
    16. Kavasseri, Rajesh G. & Nagarajan, Radhakrishnan, 2005. "A multifractal description of wind speed records," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 165-173.
    17. Paolo Castiglioni & Davide Lazzeroni & Paolo Coruzzi & Andrea Faini, 2018. "Multifractal-Multiscale Analysis of Cardiovascular Signals: A DFA-Based Characterization of Blood Pressure and Heart-Rate Complexity by Gender," Complexity, Hindawi, vol. 2018, pages 1-14, January.
    18. Yuan, Qianshun & Semba, Sherehe & Zhang, Jing & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2021. "Multi-scale transition matrix approach to time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    19. Pavón-Domínguez, P. & Serrano, S. & Jiménez-Hornero, F.J. & Jiménez-Hornero, J.E. & Gutiérrez de Ravé, E. & Ariza-Villaverde, A.B., 2013. "Multifractal detrended fluctuation analysis of sheep livestock prices in origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4466-4476.
    20. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Ko, Hee-Un & Yoon, Seong-Min & Kang, Sang Hoon, 2020. "Why cryptocurrency markets are inefficient: The impact of liquidity and volatility," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:629:y:2023:i:c:s0378437123007185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.