IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v417y2015icp150-167.html
   My bibliography  Save this article

Multifractal formalism by enforcing the universal behavior of scaling functions

Author

Listed:
  • Mukli, Peter
  • Nagy, Zoltan
  • Eke, Andras

Abstract

Despite its solid foundations, multifractal analysis is still a challenging task. The ‘inversed’ singularity spectrum is a major pitfall in standard multifractal analyses especially for empirical signals. To resolve this issue, we identified the fan-like convergent geometry of scaling functions yielding a limit value (termed focus) for all moments at the largest scale. Building on this behavior of scaling, we introduce the novel concept of focus-based multifractal formalism. It relies on enforcing this universal behavior when the moment-wise scaling exponents are assessed for the scaling functions. Besides developing focus-based variants of the established multifractal detrended fluctuation analysis and the wavelet leader method, we present a novel analytical tool of multifractal signal summation conversion. All methods are extensively tested on exact multifractal signals synthesized by the generalized binomial multifractal model in terms of precision and incidence of ‘inversed’ singularity spectra. Our focus-based variants never yielded ‘inversed’ spectra and their precision was found similar to that of standard methods. Our approach allowed computing a moment-wise and a global error parameter describing the impact of finite size effect and degree of multifractality as compared to that of the fitted exact multifractal model. We demonstrate that the standard approach to multifractal analyses contains a central element that is essentially monofractal due to its regression scheme assessing the scaling exponents for each and every moment, separately. Hence these methods can yield reliable estimates only for ideally behaving multifractal signals. In contrast, our focus-based variants due to their genuine multifractal model fitting always yield reliable estimates accompanied by goodness-of-fit statistics. The presented novel multifractal tools offer means of dealing with the consequences of endogenous impurities of potentially multifractal empirical signals.

Suggested Citation

  • Mukli, Peter & Nagy, Zoltan & Eke, Andras, 2015. "Multifractal formalism by enforcing the universal behavior of scaling functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 150-167.
  • Handle: RePEc:eee:phsmap:v:417:y:2015:i:c:p:150-167
    DOI: 10.1016/j.physa.2014.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007602
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cannon, Michael J. & Percival, Donald B. & Caccia, David C. & Raymond, Gary M. & Bassingthwaighte, James B., 1997. "Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 241(3), pages 606-626.
    2. Arneodo, A. & Bacry, E. & Muzy, J.F., 1995. "The thermodynamics of fractals revisited with wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 213(1), pages 232-275.
    3. Serrano, E. & Figliola, A., 2009. "Wavelet Leaders: A new method to estimate the multifractal singularity spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2793-2805.
    4. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    5. Schumann, Aicko Y. & Kantelhardt, Jan W., 2011. "Multifractal moving average analysis and test of multifractal model with tuned correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2637-2654.
    6. Hartmann, András & Mukli, Péter & Nagy, Zoltán & Kocsis, László & Hermán, Péter & Eke, András, 2013. "Real-time fractal signal processing in the time domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 89-102.
    7. Stanley, H.E. & Amaral, L.A.N. & Goldberger, A.L. & Havlin, S. & Ivanov, P.Ch. & Peng, C.-K., 1999. "Statistical physics and physiology: Monofractal and multifractal approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 309-324.
    8. Ludescher, Josef & Bogachev, Mikhail I. & Kantelhardt, Jan W. & Schumann, Aicko Y. & Bunde, Armin, 2011. "On spurious and corrupted multifractality: The effects of additive noise, short-term memory and periodic trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2480-2490.
    9. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    10. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    11. Stanley, H.E & Amaral, L.A.N & Canning, D & Gopikrishnan, P & Lee, Y & Liu, Y, 1999. "Econophysics: Can physicists contribute to the science of economics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 156-169.
    12. Barabási, Albert-László & Szépfalusy, Péter & Vicsek, Tamás, 1991. "Multifractal spectra of multi-affine functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 178(1), pages 17-28.
    13. Plamen Ch. Ivanov & Luís A. Nunes Amaral & Ary L. Goldberger & Shlomo Havlin & Michael G. Rosenblum & Zbigniew R. Struzik & H. Eugene Stanley, 1999. "Multifractality in human heartbeat dynamics," Nature, Nature, vol. 399(6735), pages 461-465, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Viggiano, Bianca & Sakradse, Greg & Smith, Sarah & Mungin, Rihana & Ramasubramanian, Pradeep & Ringle, Dan & Travis, Kristin & Ali, Naseem & Solovitz, Stephen & Cal, Raúl Bayoán, 2021. "Intermittent event evaluation through a multifractal approach for variable density jets," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Schadner, Wolfgang, 2022. "U.S. Politics from a multifractal perspective," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Ali, Naseem & Cal, Raúl Bayoán, 2019. "Scale evolution, intermittency and fluctuation relations in the near-wake of a wind turbine array," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 215-229.
    5. Schadner, Wolfgang, 2021. "On the persistence of market sentiment: A multifractal fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    2. Olivares, Felipe & Zanin, Massimiliano, 2022. "Corrupted bifractal features in finite uncorrelated power-law distributed data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Gulich, Damián & Zunino, Luciano, 2014. "A criterion for the determination of optimal scaling ranges in DFA and MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 17-30.
    4. Gulich, Damián & Zunino, Luciano, 2012. "The effects of observational correlated noises on multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4100-4110.
    5. Jovanovic, Tijana & Mejía, Alfonso & Gall, Heather & Gironás, Jorge, 2016. "Effect of urbanization on the long-term persistence of streamflow records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 208-221.
    6. Wang, Lei & Liu, Lutao, 2020. "Long-range correlation and predictability of Chinese stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    7. Xi, Caiping & Zhang, Shunning & Xiong, Gang & Zhao, Huichang, 2016. "A comparative study of two-dimensional multifractal detrended fluctuation analysis and two-dimensional multifractal detrended moving average algorithm to estimate the multifractal spectrum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 34-50.
    8. Kristoufek, Ladislav, 2014. "Detrending moving-average cross-correlation coefficient: Measuring cross-correlations between non-stationary series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 169-175.
    9. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    10. Xiong, Gang & Yu, Wenxian & Zhang, Shuning, 2015. "Time-singularity multifractal spectrum distribution based on detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 351-366.
    11. Liu, Yang & Zhuo, Xuru & Zhou, Xiaozhu, 2024. "Multifractal analysis of Chinese literary and web novels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    12. Shi, Wen & Zou, Rui-biao & Wang, Fang & Su, Le, 2015. "A new image segmentation method based on multifractal detrended moving average analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 197-205.
    13. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    14. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    15. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    16. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    17. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    18. Makowiec, Danuta & Dudkowska, Aleksandra & Gała̧ska, Rafał & Rynkiewicz, Andrzej, 2009. "Multifractal estimates of monofractality in RR-heart series in power spectrum ranges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3486-3502.
    19. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    20. Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:417:y:2015:i:c:p:150-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.