IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v37y2008i1p187-202.html
   My bibliography  Save this article

SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series

Author

Listed:
  • Vitanov, Nikolay K.
  • Sakai, Kenshi
  • Dimitrova, Zlatinka I.

Abstract

Singular spectrum analysis (SSA), principal component analysis (PCA), and autocorrelation function analysis (ACFA) are useful tools for extracting information from time series. But the combination of these methods and the time delay phase space construction (TDPSC) is not much used. In this paper we present the opportunities of this bundle of four methods for analysis of short and nonstationary time series. The basis of our analysis are time series for the piglet prices and production in Japan before and after the Japan government intervention in the agriculture sector aiming at stabilization of the agriculture prices after the oil crisis in 1974. As a comparison we analyse long stationary chaotic time series from the classical Lorenz system. We show that SSA, PCA and TDPSC perfectly recognize the dimension of the Lorenz system only on the basis of time series for one of its three variables. The bundle of four methods leads us to enough information to make the conclusion that the intervention of the Japan government in agriculture sector was very successful and leaded (i) to stabilization of prices; (ii) to a coupling between the prices and production cycles and (iii) to decreasing the dimension of the phase space of price and production fluctuations around the year trend thus making their dynamics more forecastable.

Suggested Citation

  • Vitanov, Nikolay K. & Sakai, Kenshi & Dimitrova, Zlatinka I., 2008. "SSA, PCA, TDPSC, ACFA: Useful combination of methods for analysis of short and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 187-202.
  • Handle: RePEc:eee:chsofr:v:37:y:2008:i:1:p:187-202
    DOI: 10.1016/j.chaos.2006.08.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906008538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.08.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitrova, Zlatinka I. & Vitanov, Nikolay K., 2001. "Adaptation and its impact on the dynamics of a system of three competing populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(1), pages 91-115.
    2. Kantz, Holger & Holstein, Detlef & Ragwitz, Mario & K. Vitanov, Nikolay, 2004. "Markov chain model for turbulent wind speed data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 315-321.
    3. Jean-Paul Chavas & Matthew T. Holt, 1993. "Market Instability and Nonlinear Dynamics," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(1), pages 113-120.
    4. C. M. Theobald & C. A. Glasbey & G. W. Horgan & C. D. Robinson, 2004. "Principal component analysis of landmarks from reversible images," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(1), pages 163-175, January.
    5. Chen, Zhi-Min & Price, W.G., 2006. "On the relation between Rayleigh–Bénard convection and Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 571-578.
    6. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    7. Vitanov, Nikolay K. & Yankulova, Elka D., 2006. "Multifractal analysis of the long-range correlations in the cardiac dynamics of Drosophila melanogaster," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 768-775.
    8. Panchev, S. & Spassova, T. & Vitanov, N.K., 2007. "Analytical and numerical investigation of two families of Lorenz-like dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1658-1671.
    9. Kantelhardt, Jan W & Koscielny-Bunde, Eva & Rego, Henio H.A & Havlin, Shlomo & Bunde, Armin, 2001. "Detecting long-range correlations with detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 441-454.
    10. Plamen Ch. Ivanov & Luís A. Nunes Amaral & Ary L. Goldberger & Shlomo Havlin & Michael G. Rosenblum & Zbigniew R. Struzik & H. Eugene Stanley, 1999. "Multifractality in human heartbeat dynamics," Nature, Nature, vol. 399(6735), pages 461-465, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quoc Bao Pham & Tao-Chang Yang & Chen-Min Kuo & Hung-Wei Tseng & Pao-Shan Yu, 2021. "Coupling Singular Spectrum Analysis with Least Square Support Vector Machine to Improve Accuracy of SPI Drought Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 847-868, February.
    2. Vitanov, Nikolay K. & Hoffmann, Norbert P. & Wernitz, Boris, 2014. "Nonlinear time series analysis of vibration data from a friction brake: SSA, PCA, and MFDFA," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 90-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitanov, Nikolay K. & Hoffmann, Norbert P. & Wernitz, Boris, 2014. "Nonlinear time series analysis of vibration data from a friction brake: SSA, PCA, and MFDFA," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 90-99.
    2. Nagarajan, Radhakrishnan & Kavasseri, Rajesh G., 2005. "Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 182-198.
    3. Jiang, Lei & Zhang, Jiping & Liu, Xinwei & Li, Fei, 2016. "Multi-fractal scaling comparison of the Air Temperature and the Surface Temperature over China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 783-792.
    4. Kavasseri, Rajesh G. & Nagarajan, Radhakrishnan, 2005. "A multifractal description of wind speed records," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 165-173.
    5. Paolo Castiglioni & Davide Lazzeroni & Paolo Coruzzi & Andrea Faini, 2018. "Multifractal-Multiscale Analysis of Cardiovascular Signals: A DFA-Based Characterization of Blood Pressure and Heart-Rate Complexity by Gender," Complexity, Hindawi, vol. 2018, pages 1-14, January.
    6. Pavón-Domínguez, P. & Serrano, S. & Jiménez-Hornero, F.J. & Jiménez-Hornero, J.E. & Gutiérrez de Ravé, E. & Ariza-Villaverde, A.B., 2013. "Multifractal detrended fluctuation analysis of sheep livestock prices in origin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4466-4476.
    7. Xu, Na & Shang, Pengjian & Kamae, Santi, 2009. "Minimizing the effect of exponential trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 311-316.
    8. Olivares, Felipe & Zanin, Massimiliano, 2022. "Corrupted bifractal features in finite uncorrelated power-law distributed data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    9. Xiong, Gang & Yu, Wenxian & Zhang, Shuning, 2015. "Time-singularity multifractal spectrum distribution based on detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 351-366.
    10. Schumann, Aicko Y. & Kantelhardt, Jan W., 2011. "Multifractal moving average analysis and test of multifractal model with tuned correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(14), pages 2637-2654.
    11. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    13. Wu, Yue & Shang, Pengjian & Chen, Shijian, 2019. "Modified multifractal large deviation spectrum based on CID for financial market system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1331-1342.
    14. Jovanovic, Tijana & Mejía, Alfonso & Gall, Heather & Gironás, Jorge, 2016. "Effect of urbanization on the long-term persistence of streamflow records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 208-221.
    15. El Alaoui, Marwane & Benbachir, Saâd, 2013. "Multifractal detrended cross-correlation analysis in the MENA area," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5985-5993.
    16. Laura Raisa Miloş & Cornel Haţiegan & Marius Cristian Miloş & Flavia Mirela Barna & Claudiu Boțoc, 2020. "Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets," Sustainability, MDPI, vol. 12(2), pages 1-15, January.
    17. Xue Pan & Lei Hou & Mutua Stephen & Huijie Yang & Chenping Zhu, 2014. "Evaluation of Scaling Invariance Embedded in Short Time Series," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    18. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    19. Liao, Fuyuan & O’Brien, William D. & Jan, Yih-Kuen, 2013. "Assessing complexity of skin blood flow oscillations in response to locally applied heating and pressure in rats: Implications for pressure ulcer risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4905-4915.
    20. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:37:y:2008:i:1:p:187-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.