IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v427y2004i6973d10.1038_nature02212.html
   My bibliography  Save this article

Mechanically driven ATP synthesis by F1-ATPase

Author

Listed:
  • Hiroyasu Itoh

    (Hamamatsu Photonics KK
    CREST “Creation and application of soft nano-machine, the hyperfunctional molecular machine” Team 13*)

  • Akira Takahashi

    (Hamamatsu Photonics KK)

  • Kengo Adachi

    (Center for Integrative Bioscience, Okazaki National Research Institutes)

  • Hiroyuki Noji

    (Institute of Industrial Science, University of Tokyo)

  • Ryohei Yasuda

    (Cold Spring Harbor Laboratory)

  • Masasuke Yoshida

    (ERATO “ATP System”)

  • Kazuhiko Kinosita

    (Center for Integrative Bioscience, Okazaki National Research Institutes)

Abstract

ATP, the main biological energy currency, is synthesized from ADP and inorganic phosphate by ATP synthase in an energy-requiring reaction1,2,3. The F1 portion of ATP synthase, also known as F1-ATPase, functions as a rotary molecular motor: in vitro its γ-subunit rotates4 against the surrounding α3β3 subunits5, hydrolysing ATP in three separate catalytic sites on the β-subunits. It is widely believed that reverse rotation of the γ-subunit, driven by proton flow through the associated Fo portion of ATP synthase, leads to ATP synthesis in biological systems1,2,3,6,7. Here we present direct evidence for the chemical synthesis of ATP driven by mechanical energy. We attached a magnetic bead to the γ-subunit of isolated F1 on a glass surface, and rotated the bead using electrical magnets. Rotation in the appropriate direction resulted in the appearance of ATP in the medium as detected by the luciferase–luciferin reaction. This shows that a vectorial force (torque) working at one particular point on a protein machine can influence a chemical reaction occurring in physically remote catalytic sites, driving the reaction far from equilibrium.

Suggested Citation

  • Hiroyasu Itoh & Akira Takahashi & Kengo Adachi & Hiroyuki Noji & Ryohei Yasuda & Masasuke Yoshida & Kazuhiko Kinosita, 2004. "Mechanically driven ATP synthesis by F1-ATPase," Nature, Nature, vol. 427(6973), pages 465-468, January.
  • Handle: RePEc:nat:nature:v:427:y:2004:i:6973:d:10.1038_nature02212
    DOI: 10.1038/nature02212
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02212
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02212?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. López-Alamilla, N.J. & Challis, K.J. & Deaker, A.G. & Jack, M.W., 2023. "The effect of futile chemical cycles on chemical-to-mechanical energy conversion in interacting motor protein systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    2. Eva Bertosin & Christopher M. Maffeo & Thomas Drexler & Maximilian N. Honemann & Aleksei Aksimentiev & Hendrik Dietz, 2021. "A nanoscale reciprocating rotary mechanism with coordinated mobility control," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:427:y:2004:i:6973:d:10.1038_nature02212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.