IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-71163-8_10.html
   My bibliography  Save this book chapter

Early Warning Systems for Currency Crises: A Regime-Switching Approach

In: Hidden Markov Models in Finance

Author

Listed:
  • Abdul Abiad

    (International Monetary Fund)

Abstract

Summary Previous early warning systems (EWS) for currency crises have relied on models that require a priori dating of crises. This paper proposes an alternative EWS, based on a Markov-switching model, which identifies and characterizes crisis periods endogenously; this also allows the model to utilize information contained in exchange rate dynamics. The model is estimated on data from 1972–1999 for the Asian crisis countries, taking a country-by-country approach. The model outperforms standard EWSs, both in signaling crises and reducing false alarms. Two lessons emerge. First, accounting for the dynamics of exchange rates is important. Second, different indicators matter for different countries, suggesting that the assumption of parameter constancy underlying panel estimates of EWSs may contribute to poor performance.

Suggested Citation

  • Abdul Abiad, 2007. "Early Warning Systems for Currency Crises: A Regime-Switching Approach," International Series in Operations Research & Management Science, in: Rogemar S. Mamon & Robert J. Elliott (ed.), Hidden Markov Models in Finance, chapter 10, pages 155-184, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-71163-8_10
    DOI: 10.1007/0-387-71163-5_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xun & He, Zongyue & Zhu, Jiali & Li, Jing, 2018. "Quantity of finance and financial crisis: A non-monotonic investigation☆," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 129-139.
    2. Wang, Peiwan & Zong, Lu, 2023. "Does machine learning help private sectors to alarm crises? Evidence from China’s currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    3. Cees Diks & Cars Hommes & Juanxi Wang, 2019. "Critical slowing down as an early warning signal for financial crises?," Empirical Economics, Springer, vol. 57(4), pages 1201-1228, October.
    4. Duprey, Thibaut & Klaus, Benjamin, 2017. "How to predict financial stress? An assessment of Markov switching models," Working Paper Series 2057, European Central Bank.
    5. Duprey, Thibaut & Klaus, Benjamin, 2022. "Early warning or too late? A (pseudo-)real-time identification of leading indicators of financial stress," Journal of Banking & Finance, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-71163-8_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.