IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v393y2014icp655-668.html
   My bibliography  Save this article

Classical limit of quantum mechanics induced by continuous measurements

Author

Listed:
  • Oliveira, Adélcio C.

Abstract

We investigate the quantum–classical transition problem. The main issue addressed is how quantum mechanics can reproduce results provided by Newton’s laws of motion. We show that the measurement process is critical to resolve this issue. In the limit of continuous monitoring with minimal intervention the classical limit is reached. The Classical Limit of Quantum Mechanic, in Newtonian sense, is determined by two parameters: the semiclassical time (τsc) and the time interval between measurements (Δτu). If is Δτu small enough, comparing with the τsc, then the classical regime is achieved. The semiclassical time for Gaussian initial states coincides with the Ehrenfest time. We also show that the classical limit of an ensemble of Newtonian trajectories, the Liouville regime, is approximately obtained for the quartic oscillator model if the number of measurements in the time interval is large enough to destroy the revival and small enough to not reach the Newtonian regime. Namely, the Newtonian regime occurs when τsc≫Δτu and the Liouvillian regime is mimicked, for the position observable, if Δτu∈[τsc,TR], where TR is the revival time.

Suggested Citation

  • Oliveira, Adélcio C., 2014. "Classical limit of quantum mechanics induced by continuous measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 655-668.
  • Handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:655-668
    DOI: 10.1016/j.physa.2013.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113008790
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reis, Mauricio & Oliveira, Adelcio C., 2022. "A complementary resource relation of concurrence and roughness for a two-qubit state," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:655-668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.