IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v598y2022ics037843712200262x.html
   My bibliography  Save this article

A bidirectional quasi-moving block cellular automaton model for single-track railways

Author

Listed:
  • Qian, Yongsheng
  • Da, Cheng
  • Zeng, Junwei
  • Wang, Xuexin
  • Zhang, Yongzhi
  • Xu, Dejie

Abstract

In this paper, a bidirectional quasi-moving block cellular automaton model for single-track railways is proposed to simulate the impact of quasi-moving block on the passing capacity of single track railway. The rules of train departure, meeting, entering the station and running in the section are formulated and the Naqu–Lhasa section of the Qinghai–Tibet Railway is taken as an example for simulation. The results show that, under the quasi moving block, with the changes of the mixed ratio and stop time of freight train, the passing capacity is improved compared with the currently adopted automatic inter-station block. Besides, it is found that the passing capacity is the largest under equal station spacing conditions, indicating that the distance between stations should be minimized in the preliminary line design.

Suggested Citation

  • Qian, Yongsheng & Da, Cheng & Zeng, Junwei & Wang, Xuexin & Zhang, Yongzhi & Xu, Dejie, 2022. "A bidirectional quasi-moving block cellular automaton model for single-track railways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
  • Handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s037843712200262x
    DOI: 10.1016/j.physa.2022.127327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712200262X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ke-Ping Li & Zi-You Gao & Bin Ning, 2005. "Modeling The Railway Traffic Using Cellular Automata Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(06), pages 921-932.
    2. Burdett, RL, 2016. "Optimisation models for expanding a railway's theoretical capacity," European Journal of Operational Research, Elsevier, vol. 251(3), pages 783-797.
    3. Bin Ning & Ke-Ping Li & Zi-You Gao, 2005. "Modeling Fixed-Block Railway Signaling System Using Cellular Automata Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(11), pages 1793-1801.
    4. Xiaoming Xu & Keping Li & Lixing Yang & Ziyou Gao, 2019. "An efficient train scheduling algorithm on a single-track railway system," Journal of Scheduling, Springer, vol. 22(1), pages 85-105, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2023. "Jamming transition in two-lane lattice model integrating the deception attacks on influx during the lane-changing process under vehicle to everything environment," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Li, Linheng & Wang, Can & Zhang, Ying & Qu, Xu & Li, Rui & Chen, Zhijun & Ran, Bin, 2022. "Microscopic state evolution model of mixed traffic flow based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Maosheng Li & Hangcong Li, 2022. "Optimal Design of Subway Train Cross-Line Operation Scheme Based on Passenger Smart Card Data," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    4. Lu, Hao & Fan, Yiwei & Jiao, Liudan & Wu, Ya, 2024. "Assessment and spatial effect of urban agglomeration business environments: A case study of two urban agglomerations in China," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    5. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    6. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yonghua & Tao, Xin & Luan, Lei & Ning, Jingjie, 2018. "Revisiting the 7/23 train accident using computer reconstruction simulation for causation and prevention analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 1-15.
    2. Zhang, San-Tong & Chen, Yi-Chuan, 2011. "Simulation for influence of train failure on railway traffic flow and research on train operation adjusting strategies using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3710-3718.
    3. Li, Feng & Gao, Ziyou & Wang, David Z.W. & Liu, Ronghui & Tang, Tao & Wu, Jianjun & Yang, Lixing, 2017. "A subjective capacity evaluation model for single-track railway system with δ-balanced traffic and λ-tolerance level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 43-66.
    4. Toru Seo & Kentaro Wada & Daisuke Fukuda, 2023. "Fundamental diagram of urban rail transit considering train–passenger interaction," Transportation, Springer, vol. 50(4), pages 1399-1424, August.
    5. Hrvoje HARAMINA & Ivan TALAN & Branko MIHALJEVIĆ, 2018. "Improvement Of Suburban Railway Services By Infrastructure And Timetable Modifications Based On Simulation Modelling," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(3), pages 15-27, September.
    6. Bayan Bevrani & Robert L. Burdett & Ashish Bhaskar & Prasad K. D. V. Yarlagadda, 2020. "A multi commodity flow model incorporating flow reduction functions," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 693-723, September.
    7. Jovanović, Predrag & Pavlović, Norbert & Belošević, Ivan & Milinković, Sanjin, 2020. "Graph coloring-based approach for railway station design analysis and capacity determination," European Journal of Operational Research, Elsevier, vol. 287(1), pages 348-360.
    8. (Ato) Xu, Wangtu & Huang, Ying, 2019. "The correlation between HSR construction and economic development – Empirical study of Chinese cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 24-36.
    9. K. P. Anoop & A. Madhukumar Reddy & Mandeep Singh Bhatia & Amit Kumar Jain & R. Gopalakrishnan & Merajus Salekin & Samay Pritam Singh & R. V. Satwik & Sudarshan Pulapadi & Chandrashekhar Bobade & I. S, 2023. "Rationalized Timetabling Using a Simulation Tool: A Paradigm Shift in Indian Railways," Interfaces, INFORMS, vol. 53(4), pages 295-306, July.
    10. Burdett, Robert L. & Kozan, Erhan, 2018. "An integrated approach for scheduling health care activities in a hospital," European Journal of Operational Research, Elsevier, vol. 264(2), pages 756-773.
    11. Bevrani, Bayan & Burdett, Robert & Bhaskar, Ashish & Yarlagadda, Prasad K.D.V., 2020. "A multi-criteria multi-commodity flow model for analysing transportation networks," Operations Research Perspectives, Elsevier, vol. 7(C).
    12. Qi, Le & Zheng, Zhongyi & Gang, Longhui, 2017. "A cellular automaton model for ship traffic flow in waterways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 705-717.
    13. Jaromír Široký & Petr Nachtigall & Erik Tischer & Jozef Gašparík, 2021. "Simulation of Railway Lines with a Simplified Interlocking System," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    14. Anupriya, & Graham, Daniel J. & Bansal, Prateek & Hörcher, Daniel & Anderson, Richard, 2023. "Optimal congestion control strategies for near-capacity urban metros: Informing intervention via fundamental diagrams," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    15. Bevrani, Bayan & Burdett, Robert L. & Bhaskar, Ashish & Yarlagadda, Prasad K.D.V., 2017. "A capacity assessment approach for multi-modal transportation systems," European Journal of Operational Research, Elsevier, vol. 263(3), pages 864-878.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s037843712200262x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.