IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v643y2024ics0378437124003315.html
   My bibliography  Save this article

A cellular automaton model for mixed traffic flow considering the size of CAV platoon

Author

Listed:
  • Wang, Zhengwu
  • Chen, Tao
  • Wang, Yi
  • Li, Hao

Abstract

In the environment of intelligent connected vehicles, the mixed traffic flow consisting of human-driven vehicles (HDVs), connected and automated vehicles (CAVs), and their platoons will coexist for a long time. Exploring and discovering the operational rules of mixed traffic flow is the foundation for its management and control. This study delves into the distinct characteristics of various vehicles within a mixed traffic environment, particularly focusing on HDVs, CAVs, and CAV platoons. Drawing on the psychological predisposition of HDVs to maintain a prudent following distance, we introduce a discrete motion safety distance model to establish the longitudinal movement rule for HDVs. Furthermore, a longitudinal movement rule for CAVs is established based on their ability to keep a constant headway using Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC), alongside meeting specific speed and spacing criteria for platoon movement. On this basis, the paper proposes a cellular automaton model for single-lane mixed traffic flow that accounts for CAV platoon length and the decision-time disparity between HDVs and CAVs. The simulation results show that an increased proportion of CAVs can enhance the traffic capacity, elevate average speed, extend average platoon length, and reduce the congestion ratio and CACC degradation rate. Notably, in scenarios where the CAV proportion p > 0.7, the flow-density graph shows a trapezoidal shape, with the majority of CAVs in the traffic flow synchronizing their movements in CACC mode. Even when vehicular density surpasses the optimum threshold, the traffic flow maintains high-speed operation until reaching a critical congestion point, whereupon velocities precipitously decline. Through sensitivity analysis aimed at understanding the impact of maximum platoon length, it has been observed that, for CAV proportions below 0.7, variations in maximum platoon length negligibly impact traffic capacity, velocity, CACC degradation, and congestion levels. Only in scenarios dominated by CAVs does extending platoon length restrictions significantly enhance performance. However, as the maximum platoon length increases, the gains in traffic capacity, speed, CACC degradation rate, and congestion ratio diminish. When the platoon length of CACC exceeds a certain threshold, there will not be a significant improvement in traffic capacity or speed.

Suggested Citation

  • Wang, Zhengwu & Chen, Tao & Wang, Yi & Li, Hao, 2024. "A cellular automaton model for mixed traffic flow considering the size of CAV platoon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
  • Handle: RePEc:eee:phsmap:v:643:y:2024:i:c:s0378437124003315
    DOI: 10.1016/j.physa.2024.129822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124003315
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rachid Marzoug & Noureddine Lakouari & José Roberto Pérez Cruz & Carlos Jesahel Vega Gómez, 2022. "Cellular Automata Model for Analysis and Optimization of Traffic Emission at Signalized Intersection," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    2. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Zeng, Junwei & Qian, Yongsheng & Mi, Pengfei & Zhang, Chaoyang & Yin, Fan & Zhu, Leipeng & Xu, Dejie, 2021. "Freeway traffic flow cellular automata model based on mean velocity feedback," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    4. Zhai, Cong & Zhang, Ronghui & Peng, Tao & Zhong, Changfu & Xu, Hongguo, 2023. "Heterogeneous lattice hydrodynamic model and jamming transition mixed with connected vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    5. Zhu, Liling & Tang, Yandong & Yang, Da, 2021. "Cellular automata-based modeling and simulation of the mixed traffic flow of vehicle platoon and normal vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    6. Liu, Keyi & Feng, Tianjun, 2023. "Heterogeneous traffic flow cellular automata model mixed with intelligent controlled vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    7. Zhou, Y.J. & Zhu, H.B. & Guo, M.M. & Zhou, J.L., 2020. "Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Vranken, Tim & Sliwa, Benjamin & Wietfeld, Christian & Schreckenberg, Michael, 2021. "Adapting a cellular automata model to describe heterogeneous traffic with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    9. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    10. Li, Linheng & Wang, Can & Zhang, Ying & Qu, Xu & Li, Rui & Chen, Zhijun & Ran, Bin, 2022. "Microscopic state evolution model of mixed traffic flow based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Jiang, Yangsheng & Cong, Hongwei & Wang, Yi & Wu, Yunxia & Li, Hongwu & Yao, Zhihong, 2023. "A new control strategy of CAVs platoon for mitigating traffic oscillation in a two-lane highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    12. Qi-Lang Li & Rui Jiang & Zhong-Jun Ding & Bing-Hong Wang, 2020. "A new cellular automata traffic flow model considering asynchronous update of vehicle velocity," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(12), pages 1-10, December.
    13. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    14. Li, Linheng & Gan, Jing & Zhou, Kun & Qu, Xu & Ran, Bin, 2020. "A novel lane-changing model of connected and automated vehicles: Using the safety potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Dian & Yao, Enjian & Chen, Rongsheng, 2023. "Moving characteristics analysis of mixed traffic flow of CAVs and HVs around accident zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    2. He, Yongming & Feng, Jia & Wei, Kun & Cao, Jian & Chen, Shisheng & Wan, Yanan, 2023. "Modeling and simulation of lane-changing and collision avoiding autonomous vehicles on superhighways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Kang, Yi-rong & Tian, Chuan, 2024. "A new curved road lattice model integrating the multiple prediction effect under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    4. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    5. Sun, Baofeng & Ma, Guodong & Song, Jia & Cheng, Zeyang & Wang, Wei, 2023. "Driving safety field modeling focused on heterogeneous traffic flows and cooperative control strategy in highway merging zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    6. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. Ai, Yi & Li, Yueyang & Han, Xun & Yao, Zhihong & Li, Zongping, 2024. "Real-time risk assessment method for multi-aircraft interaction based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    8. Liu, Keyi & Feng, Tianjun, 2023. "Heterogeneous traffic flow cellular automata model mixed with intelligent controlled vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    9. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    10. Li, Linheng & Wang, Can & Zhang, Ying & Qu, Xu & Li, Rui & Chen, Zhijun & Ran, Bin, 2022. "Microscopic state evolution model of mixed traffic flow based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    12. Sueyoshi, Fumi & Utsumi, Shinobu & Tanimoto, Jun, 2022. "Underlying social dilemmas in mixed traffic flow with lane changes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    14. Ren, Wenhao & Zhao, Xiaohua & Li, Haijian & Fu, Qiang, 2024. "Traffic flow impact of mixed heterogeneous platoons on highways: an approach combining driving simulation and microscopic traffic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    15. Mohammed Al-Turki & Nedal T. Ratrout & Syed Masiur Rahman & Imran Reza, 2021. "Impacts of Autonomous Vehicles on Traffic Flow Characteristics under Mixed Traffic Environment: Future Perspectives," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    16. Pei, Yulong & Pan, Sheng & Wen, Yuhang, 2024. "Analysis of roadway capacity for heterogeneous traffic flows considering the degree of trust of drivers of HVs in CAVs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    17. Vranken, Tim & Schreckenberg, Michael, 2022. "Modelling multi-lane heterogeneous traffic flow with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    18. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    19. Tanimoto, Jun & Futamata, Masanori & Tanaka, Masaki, 2020. "Automated vehicle control systems need to solve social dilemmas to be disseminated," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    20. Peng, Jiali & Shangguan, Wei & Peng, Cong & Chai, Linguo, 2024. "Uncertainty modeling of connected and automated vehicle penetration rate under mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:643:y:2024:i:c:s0378437124003315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.