IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v586y2022ics0378437121007755.html
   My bibliography  Save this article

Car-following characteristics and model of connected autonomous vehicles based on safe potential field

Author

Listed:
  • Jia, Yanfeng
  • Qu, Dayi
  • Song, Hui
  • Wang, Tao
  • Zhao, Zixu

Abstract

Aiming at the characteristics of connected and autonomous vehicle (CAV) which makes autonomous decision by perceiving the surrounding environment, a safe potential field model including lane marking potential field, road boundary potential field and vehicle potential field is established to describe the safe risk of CAV in the process of driving. In the process of building the safe potential field model, aiming at the defect that the existing vehicle potential field function has independent gravitational and repulsive expressions, a unified function of vehicle potential field based on Lennard-Jones potential is established by referring to the relationship of intermolecular interaction, and the parameter of vehicle’s acceleration is considered into the vehicle potential field model. The statistical analysis of the parameter reveals that the change of acceleration directly affects the distribution of vehicle potential field and reflect the dynamic trend of vehicle’s safe potential field under different driving states. Then, the safe potential field is applied to the car-following behavior of CAV, and the model’s parameters are calibrated by Shanghai natural driving dataset; Finally, compared with the existing classic IDM and VTH models, the simulation results show that: the model still has smoother response curves in the three car-following scenarios designed to improve the safety and efficiency, which verifies the effectiveness of the model. The research results can lay a theoretical foundation for decision making behavior of safe driving, and also provide a unique way for the research of CAVs’ safe technology.

Suggested Citation

  • Jia, Yanfeng & Qu, Dayi & Song, Hui & Wang, Tao & Zhao, Zixu, 2022. "Car-following characteristics and model of connected autonomous vehicles based on safe potential field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
  • Handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007755
    DOI: 10.1016/j.physa.2021.126502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121007755
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.126502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    2. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    3. Ou, Hui & Tang, Tie-Qiao, 2018. "Impacts of moving bottlenecks on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 131-138.
    4. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    5. Pan, Wei & Xue, Yu & He, Hong-Di & Lu, Wei-Zhen, 2018. "Impacts of traffic congestion on fuel rate, dissipation and particle emission in a single lane based on Nasch Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 154-162.
    6. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    7. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    8. X. Zhao & Z. Gao, 2005. "A new car-following model: full velocity and acceleration difference model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 47(1), pages 145-150, September.
    9. Peng, Guang-han & Cheng, Rong-jun, 2013. "A new car-following model with the consideration of anticipation optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3563-3569.
    10. Yu, Shaowei & Zhao, Xiangmo & Xu, Zhigang & Zhang, Licheng, 2016. "The effects of velocity difference changes with memory on the dynamics characteristics and fuel economy of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 613-628.
    11. Li, Linheng & Gan, Jing & Zhou, Kun & Qu, Xu & Ran, Bin, 2020. "A novel lane-changing model of connected and automated vehicles: Using the safety potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Wenhan & Weng, Jiancheng & Li, Tongfei & Fan, Bo & Bian, Yang, 2024. "Modeling the road network capacity in a mixed HV and CAV environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    2. Qin, Yanyan & Liu, Mingxuan & Hao, Wei, 2024. "Energy-optimal car-following model for connected automated vehicles considering traffic flow stability," Energy, Elsevier, vol. 298(C).
    3. Zhang, Xiangzhou & Shi, Zhongke & Yang, Qiaoli & An, Xiaodong, 2024. "Impacts of visuo-spatial working memory on the dynamic performance and safety of car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    4. Bari, Chintaman Santosh & Chandra, Satish & Dhamaniya, Ashish, 2022. "Service headway distribution analysis of FASTag lanes under mixed traffic conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    5. Hao Ma & Wenhui Pei & Qi Zhang, 2022. "Research on Path Planning Algorithm for Driverless Vehicles," Mathematics, MDPI, vol. 10(15), pages 1-14, July.
    6. Yin, Jiacheng & Li, Zongping & Cao, Peng & Li, Linheng & Ju, Yanni, 2023. "Car-following modeling based on Morse model with consideration of road slope in connected vehicles environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    7. Hu, Xu & Li, Dongshuang & Yu, Zhaoyuan & Yan, Zhenjun & Luo, Wen & Yuan, Linwang, 2022. "Quantum harmonic oscillator model for fine-grained expressway traffic volume simulation considering individual heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    2. Kun Zhang & Yu Xue & Hao-Jie Luo & Qiang Zhang & Yuan Tang & Bing-Ling Cen, 2023. "Cyber-attacks on the optimal velocity and its variation by bifurcation analyses," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-19, December.
    3. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    4. Kekun Zhang & Dayi Qu & Hui Song & Tao Wang & Shouchen Dai, 2022. "Analysis of Lane-Changing Decision-Making Behavior and Molecular Interaction Potential Modeling for Connected and Automated Vehicles," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    5. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    6. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    7. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    8. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended car-following model considering the self-stabilizing driving behavior of headway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 347-357.
    9. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    10. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    11. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    12. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    13. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Modeling and simulation of driver’s anticipation effect in a two lane system on curved road with slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 110-120.
    14. Yifan Pan & Yongjiang Wang & Baobin Miao & Rongjun Cheng, 2022. "Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    15. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    16. Xiong, Bang-Kai & Jiang, Rui & Tian, Jun-Fang, 2019. "Improving two-dimensional intelligent driver models to overcome overly high deceleration in car-following," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    17. Dayi Qu & Shaojie Wang & Haomin Liu & Yiming Meng, 2022. "A Car-Following Model Based on Trajectory Data for Connected and Automated Vehicles to Predict Trajectory of Human-Driven Vehicles," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    18. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Global Optimality under Internet of Vehicles: Strategy to Improve Traffic Safety and Reduce Energy Dissipation," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    19. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    20. Yu, Shaowei & Huang, Mengxing & Ren, Jia & Shi, Zhongke, 2016. "An improved car-following model considering velocity fluctuation of the immediately ahead car," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.