IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v80y2015icp257-274.html
   My bibliography  Save this article

Driver perception uncertainty in perceived relative speed and reaction time in car following – A quantum optical flow perspective

Author

Listed:
  • Sheu, Jiuh-Biing
  • Wu, Hsi-Jen

Abstract

Driver perception uncertainty characterized in perceived relatnd reaction time plays a key role in influencing car-following behavior; and however, is rarely investigated in related literature. Grounded on quantum optical flow theory, we propose a dynamic and stochastic driver perception model to investigate the relationship between the uncertainty of perceived relative speed and that of reaction time during car following. Specifically, the proposed model hypothesizes that driver perceived speed and reaction time are time-varying and uncertain, and correlate in a trade-off relationship mimicking the form of Heisenberg Uncertainty Principle. To test the assertion that a trade-off relationship of uncertainty in perceived relative speed and reaction time exists in car following, this study conducts qualitative analysis followed by a two-stage experiment rooted in quantum optical flow theory using data collected from a driver simulator. Analytical results further elucidate car-following phenomena under driver-perception uncertainty, potentially facilitating the development of new traffic flow theories.

Suggested Citation

  • Sheu, Jiuh-Biing & Wu, Hsi-Jen, 2015. "Driver perception uncertainty in perceived relative speed and reaction time in car following – A quantum optical flow perspective," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 257-274.
  • Handle: RePEc:eee:transb:v:80:y:2015:i:c:p:257-274
    DOI: 10.1016/j.trb.2015.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515001642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2015.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    2. Shiomi, Yasuhiro & Yoshii, Toshio & Kitamura, Ryuichi, 2011. "Platoon-based traffic flow model for estimating breakdown probability at single-lane expressway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1314-1330.
    3. Tanaka, Katsunori & Nagai, Ryoichi & Nagatani, Takashi, 2006. "Traffic jam and discontinuity induced by slowdown in two-stage optimal-velocity model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 756-768.
    4. Paz, Alexander & Peeta, Srinivas, 2009. "Information-based network control strategies consistent with estimated driver behavior," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 73-96, January.
    5. Chiu, Yi-Chang & Zhou, Liang & Song, Houbing, 2010. "Development and calibration of the Anisotropic Mesoscopic Simulation model for uninterrupted flow facilities," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 152-174, January.
    6. Jinjing Li & Cathal O'Donoghue, 2012. "Simulating Histories within Dynamic Microsimulation Models," International Journal of Microsimulation, International Microsimulation Association, vol. 5(1), pages 52-76.
    7. Tan, Alvin & Brewer, Paul & Liesch, Peter W., 2007. "Before the first export decision: Internationalisation readiness in the pre-export phase," International Business Review, Elsevier, vol. 16(3), pages 294-309, June.
    8. Malhotra, Naresh K., 2005. "Attitude and affect: new frontiers of research in the 21st century," Journal of Business Research, Elsevier, vol. 58(4), pages 477-482, April.
    9. Laval, Jorge A. & Toth, Christopher S. & Zhou, Yi, 2014. "A parsimonious model for the formation of oscillations in car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 228-238.
    10. Nagai, Ryoichi & Hanaura, Hirotoshi & Tanaka, Katsunori & Nagatani, Takashi, 2006. "Discontinuity at edge of traffic jam induced by slowdown," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 464-472.
    11. Hanaura, Hirotoshi & Nagatani, Takashi & Tanaka, Katsunori, 2007. "Jam formation in traffic flow on a highway with some slowdown sections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 419-430.
    12. Tian, Junfang & Treiber, Martin & Ma, Shoufeng & Jia, Bin & Zhang, Wenyi, 2015. "Microscopic driving theory with oscillatory congested states: Model and empirical verification," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 138-157.
    13. Koutsopoulos, Haris N. & Farah, Haneen, 2012. "Latent class model for car following behavior," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 563-578.
    14. Wagner, Peter, 2012. "Analyzing fluctuations in car-following," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1384-1392.
    15. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siqueira, Adriano F. & Peixoto, Carlos J.T. & Wu, Chen & Qian, Wei-Liang, 2016. "Effect of stochastic transition in the fundamental diagram of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 1-13.
    2. Hu, Xu & Li, Dongshuang & Yu, Zhaoyuan & Yan, Zhenjun & Luo, Wen & Yuan, Linwang, 2022. "Quantum harmonic oscillator model for fine-grained expressway traffic volume simulation considering individual heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Chun-Xiu & Zhang, Peng & Wong, S.C. & Choi, Keechoo, 2014. "Steady-state traffic flow on a ring road with up- and down-slopes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 85-93.
    2. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    3. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish & Haque, Md. Mazharul, 2019. "Modelling car-following behaviour of connected vehicles with a focus on driver compliance," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 256-279.
    4. Zhang, Lele & de Gier, Jan & Garoni, Timothy M., 2014. "Traffic disruption and recovery in road networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 82-102.
    5. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    6. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    7. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    8. He, Zhengbing & Zheng, Liang & Guan, Wei, 2015. "A simple nonparametric car-following model driven by field data," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 185-201.
    9. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stability analysis of stochastic second-order macroscopic continuum models and numerical simulations," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 193-209.
    10. Meng, Jingwei & Jin, Yanfei & Xu, Meng, 2023. "Stochastic dynamics of a discrete-time car-following model and its time-delayed feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    11. Wang, Tao & Li, Guangyao & Zhang, Jing & Li, Shubin & Sun, Tao, 2019. "The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 566-575.
    12. Nishi, Ryosuke & Watanabe, Takashi, 2022. "System-size dependence of a jam-absorption driving strategy to remove traffic jam caused by a sag under the presence of traffic instability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    13. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    14. Nishi, Ryosuke, 2020. "Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    15. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    16. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    17. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    18. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
    19. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    20. Tian, Junfang & Zhang, H.M. & Treiber, Martin & Jiang, Rui & Gao, Zi-You & Jia, Bin, 2019. "On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 334-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:80:y:2015:i:c:p:257-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.