IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v640y2024ics0378437124002012.html
   My bibliography  Save this article

Universality of area occupancy-based fundamental diagrams in mixed traffic

Author

Listed:
  • Maiti, Nandan
  • Laval, Jorge A.
  • Chilukuri, Bhargava Rama

Abstract

Modeling and investigating the properties of fundamental diagrams (FDs) in mixed traffic, which encompasses heterogeneous with non-lane-based flow, has been one of the emerging research areas in the past few years. The main challenges in modeling are: estimating accurate steady-state (ss) points based on empirical observations and properly representing FDs in mixed traffic conditions. The first part of this work uses the traditional discretization approach and the optimal time–space window to apply Edie’s generalized definitions to estimate the traffic flow variables and the steady states. The second part of the work involves a trajectory shear mapping method to estimate less-scattered FDs. Finally, the shape of the FDs are determined, and their properties are studied by developing area occupancy-based (ao) normalized flow and speed models. Empirical observations from multiple locations show that the power-law relationships seem to be the best fit based on the ao-based representation of the fundamental parameter that indicates the possibility of universality in the FDs from the mixed traffic conditions.

Suggested Citation

  • Maiti, Nandan & Laval, Jorge A. & Chilukuri, Bhargava Rama, 2024. "Universality of area occupancy-based fundamental diagrams in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
  • Handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s0378437124002012
    DOI: 10.1016/j.physa.2024.129692
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124002012
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laval, Jorge A. & Castrillón, Felipe, 2015. "Stochastic approximations for the macroscopic fundamental diagram of urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 904-916.
    2. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    3. Cassidy, Michael J., 1998. "Bivariate relations in nearly stationary highway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 49-59, January.
    4. Zeng, Junwei & Qian, Yongsheng & Li, Jiao & Zhang, Yongzhi & Xu, Dejie, 2023. "Congestion and energy consumption of heterogeneous traffic flow mixed with intelligent connected vehicles and platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Nair, Rahul & Mahmassani, Hani S. & Miller-Hooks, Elise, 2011. "A porous flow approach to modeling heterogeneous traffic in disordered systems," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1331-1345.
    6. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    7. Papageorgiou, Markos & Blosseville, Jean-Marc & Hadj-Salem, Habib, 1989. "Macroscopic modelling of traffic flow on the Boulevard Périphérique in Paris," Transportation Research Part B: Methodological, Elsevier, vol. 23(1), pages 29-47, February.
    8. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    9. Laval, Jorge A. & Chilukuri, Bhargava R., 2016. "Symmetries in the kinematic wave model and a parameter-free representation of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 168-177.
    10. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    11. Logghe, S. & Immers, L.H., 2008. "Multi-class kinematic wave theory of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 523-541, July.
    12. Maiti, Nandan & Chilukuri, Bhargava Rama, 2023. "Does anisotropy hold in mixed traffic conditions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    13. Daganzo, Carlos F. & Knoop, Victor L., 2016. "Traffic flow on pedestrianized streets," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 211-222.
    14. Ngoduy, D. & Liu, R., 2007. "Multiclass first-order simulation model to explain non-linear traffic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 667-682.
    15. I. Prigogine & F. C. Andrews, 1960. "A Boltzmann-Like Approach for Traffic Flow," Operations Research, INFORMS, vol. 8(6), pages 789-797, December.
    16. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    17. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    18. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    2. Lu, Jing & Osorio, Carolina, 2024. "Link transmission model: A formulation with enhanced compute time for large-scale network optimization," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    3. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    4. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    5. Michael Z. F. Li, 2008. "A Generic Characterization of Equilibrium Speed-Flow Curves," Transportation Science, INFORMS, vol. 42(2), pages 220-235, May.
    6. Coifman, Benjamin & Ponnu, Balaji & El Asmar, Paul, 2023. "LWR and shockwave analysis - Failures under a concave fundamental diagram and unexpected induced disturbances," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    7. Qian, Wei-Liang & F. Siqueira, Adriano & F. Machado, Romuel & Lin, Kai & Grant, Ted W., 2017. "Dynamical capacity drop in a nonlinear stochastic traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 328-339.
    8. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    9. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    10. Niek Baer & Richard J. Boucherie & Jan-Kees C. W. van Ommeren, 2019. "Threshold Queueing to Describe the Fundamental Diagram of Uninterrupted Traffic," Transportation Science, INFORMS, vol. 53(2), pages 585-596, March.
    11. Juan Carlos Muñoz & Carlos F. Daganzo, 2003. "Structure of the Transition Zone Behind Freeway Queues," Transportation Science, INFORMS, vol. 37(3), pages 312-329, August.
    12. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    13. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    14. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    15. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    16. Daganzo, Carlos F. & Lehe, Lewis J., 2016. "Traffic flow on signalized streets," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 56-69.
    17. Ludovic Leclercq & Mahendra Paipuri, 2019. "Macroscopic Traffic Dynamics Under Fast-Varying Demand," Transportation Science, INFORMS, vol. 53(6), pages 1526-1545, November.
    18. Mariotte, Guilhem & Leclercq, Ludovic & Laval, Jorge A., 2017. "Macroscopic urban dynamics: Analytical and numerical comparisons of existing models," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 245-267.
    19. Tilg, Gabriel & Ambühl, Lukas & Batista, Sergio & Menendez, Monica & Busch, Fritz, 2021. "On the application of variational theory to urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 435-456.
    20. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s0378437124002012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.