IDEAS home Printed from https://ideas.repec.org/a/taf/transr/v38y2018i6p786-814.html
   My bibliography  Save this article

Spatiotemporal traffic forecasting: review and proposed directions

Author

Listed:
  • Alireza Ermagun
  • David Levinson

Abstract

This paper systematically reviews studies that forecast short-term traffic conditions using spatial dependence between links. We extract and synthesise 130 research papers, considering two perspectives: (1) methodological framework and (2) methods for capturing spatial information. Spatial information boosts the accuracy of prediction, particularly in congested traffic regimes and for longer horizons. Machine learning methods, which have attracted more attention in recent years, outperform the naïve statistical methods such as historical average and exponential smoothing. However, there is no guarantee of superiority when machine learning methods are compared with advanced statistical methods such as spatiotemporal autoregressive integrated moving average. As for the spatial dependency detection, a large gulf exists between the realistic spatial dependence of traffic links on a real network and the studied networks as follows: (1) studies capture spatial dependency of either adjacent or distant upstream and downstream links with the study link, (2) the spatially relevant links are selected either by prejudgment or by correlation-coefficient analysis, and (3) studies develop forecasting methods in a corridor test sample, where all links are connected sequentially together, assume a similarity between the behaviour of both parallel and adjacent links, and overlook the competitive nature of traffic links.

Suggested Citation

  • Alireza Ermagun & David Levinson, 2018. "Spatiotemporal traffic forecasting: review and proposed directions," Transport Reviews, Taylor & Francis Journals, vol. 38(6), pages 786-814, November.
  • Handle: RePEc:taf:transr:v:38:y:2018:i:6:p:786-814
    DOI: 10.1080/01441647.2018.1442887
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01441647.2018.1442887
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01441647.2018.1442887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huan Ngo & Sabyasachee Mishra, 2023. "Traffic Graph Convolutional Network for Dynamic Urban Travel Speed Estimation," Networks and Spatial Economics, Springer, vol. 23(1), pages 179-222, March.
    2. Chikaraishi, Makoto & Garg, Prateek & Varghese, Varun & Yoshizoe, Kazuki & Urata, Junji & Shiomi, Yasuhiro & Watanabe, Ryuki, 2020. "On the possibility of short-term traffic prediction during disaster with machine learning approaches: An exploratory analysis," Transport Policy, Elsevier, vol. 98(C), pages 91-104.
    3. Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    4. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Gutierrez-Lythgoe, Antonio, 2023. "Movilidad urbana sostenible: Predicción de demanda con Inteligencia Artificial [Sustainable Urban Mobility: Demand Prediction with Artificial Intelligence]," MPRA Paper 117103, University Library of Munich, Germany.
    6. Sergei V. Shalagin, 2021. "Computing a Group of Polynomials over a Galois Field in FPGA Architecture," Mathematics, MDPI, vol. 9(24), pages 1-10, December.
    7. Mohandu Anjaneyulu & Mohan Kubendiran, 2022. "Short-Term Traffic Congestion Prediction Using Hybrid Deep Learning Technique," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    8. Hu, Xu & Li, Dongshuang & Yu, Zhaoyuan & Yan, Zhenjun & Luo, Wen & Yuan, Linwang, 2022. "Quantum harmonic oscillator model for fine-grained expressway traffic volume simulation considering individual heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transr:v:38:y:2018:i:6:p:786-814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TTRV20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.