IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v4y2010i4p524-539.html
   My bibliography  Save this article

A general method for generating parametric Lorenz and Leimkuhler curves

Author

Listed:
  • Sarabia, José María
  • Gómez-Déniz, Emilio
  • Sarabia, María
  • Prieto, Faustino

Abstract

Let L0 consider an initial Lorenz curve. In this paper we propose a general methodology for obtaining new classes of parametric Lorenz or Leimkuhler curves that contain the original curve as limiting or special case. The new classes introduce additional parameters in the original family, providing more flexibility for the new families. The new classes are built from an ordered sequence of power Lorenz curves, assuming that the powers are distributed according to some convenient discrete random variable. Using this method we obtain many of the families proposed in the literature, including the classical proposal of Bradford (1934), Kakwani and Podder (1973) and others. We obtain some inequality measures and population functions for the proposed families.

Suggested Citation

  • Sarabia, José María & Gómez-Déniz, Emilio & Sarabia, María & Prieto, Faustino, 2010. "A general method for generating parametric Lorenz and Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 4(4), pages 524-539.
  • Handle: RePEc:eee:infome:v:4:y:2010:i:4:p:524-539
    DOI: 10.1016/j.joi.2010.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157710000568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2010.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Villasenor, JoseA. & Arnold, Barry C., 1989. "Elliptical Lorenz curves," Journal of Econometrics, Elsevier, vol. 40(2), pages 327-338, February.
    2. Ryu, Hang K. & Slottje, Daniel J., 1996. "Two flexible functional form approaches for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 251-274.
    3. L. Egghe, 2005. "Zipfian and Lotkaian continuous concentration theory," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 56(9), pages 935-945, July.
    4. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    5. Sarabia, José María & Castillo, Enrique & Pascual, Marta & Sarabia, María, 2005. "Mixture Lorenz curves," Economics Letters, Elsevier, vol. 89(1), pages 89-94, October.
    6. Kakwani, N C & Podder, N, 1973. "On the Estimation of Lorenz Curves from Grouped Observations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 278-292, June.
    7. Rossi, Jose W., 1985. "Notes on a new functional form for the Lorenz curve," Economics Letters, Elsevier, vol. 17(1-2), pages 193-197.
    8. repec:bla:revinw:v:37:y:1991:i:4:p:447-52 is not listed on IDEAS
    9. Ogwang, Tomson & Gouranga Rao, U. L., 1996. "A new functional form for approximating the Lorenz curve," Economics Letters, Elsevier, vol. 52(1), pages 21-29, July.
    10. P. Ortega & G. Martín & A. Fernández & M. Ladoux & A. García, 1991. "A New Functional Form For Estimating Lorenz Curves," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 37(4), pages 447-452, December.
    11. Abraham Bookstein, 1977. "Patterns of Scientific Productivity and Social Change: A Discussion of Lotka's Law and Bibliometric Symmetry," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 28(4), pages 206-210, July.
    12. Gupta, Manash Ranjan, 1984. "Functional Form for Estimating the Lorenz Curve," Econometrica, Econometric Society, vol. 52(5), pages 1313-1314, September.
    13. Jose-Mari Sarabia, 1997. "A hierarchy of lorenz curves based on the generalized tukey's lambda distribution," Econometric Reviews, Taylor & Francis Journals, vol. 16(3), pages 305-320.
    14. Rasche, R H, et al, 1980. "Functional Forms for Estimating the Lorenz Curve: Comment," Econometrica, Econometric Society, vol. 48(4), pages 1061-1062, May.
    15. José-María Sarabia & Enrique Castillo & Daniel J. Slottje, 2001. "An Exponential Family of Lorenz Curves," Southern Economic Journal, John Wiley & Sons, vol. 67(3), pages 748-756, January.
    16. Holm, Juhani, 1993. "Maximum entropy Lorenz curves," Journal of Econometrics, Elsevier, vol. 59(3), pages 377-389, October.
    17. Basmann, R. L. & Hayes, K. J. & Slottje, D. J. & Johnson, J. D., 1990. "A general functional form for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 43(1-2), pages 77-90.
    18. H. S. Sichel, 1985. "A bibliometric distribution which really works," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 36(5), pages 314-321, September.
    19. Ogwang, Tomson & Rao, U. L. Gouranga, 2000. "Hybrid models of the Lorenz curve," Economics Letters, Elsevier, vol. 69(1), pages 39-44, October.
    20. Arnold, Barry C, et al, 1987. "Generating Ordered Families of Lorenz Curves by Strongly Unimodal Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(2), pages 305-308, April.
    21. Sarabia, José María, 2008. "A general definition of the Leimkuhler curve," Journal of Informetrics, Elsevier, vol. 2(2), pages 156-163.
    22. Kakwani, Nanak C & Podder, N, 1976. "Efficient Estimation of the Lorenz Curve and Associated Inequality Measures from Grouped Observations," Econometrica, Econometric Society, vol. 44(1), pages 137-148, January.
    23. Chotikapanich, Duangkamon, 1993. "A comparison of alternative functional forms for the Lorenz curve," Economics Letters, Elsevier, vol. 41(2), pages 129-138.
    24. Zornig, Peter & Altmann, Gabriel, 1995. "Unified representation of Zipf distributions," Computational Statistics & Data Analysis, Elsevier, vol. 19(4), pages 461-473, April.
    25. Michael Nelson & J. Stephen Downie, 2002. "Informetric analysis of a music database," Scientometrics, Springer;Akadémiai Kiadó, vol. 54(2), pages 243-255, June.
    26. Sarabia, José María & Prieto, Faustino & Sarabia, María, 2010. "Revisiting a functional form for the Lorenz curve," Economics Letters, Elsevier, vol. 107(2), pages 249-252, May.
    27. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shifna P. R. & N. Unnikrishnan Nair & S. M. Sunoj, 2024. "Multivariate Leimkuhler Curve: Properties and Applications to Analysis of Bibliometric Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 999-1024, August.
    2. Unnikrishnan Nair, N. & Vineshkumar, B., 2022. "Modelling informetric data using quantile functions," Journal of Informetrics, Elsevier, vol. 16(2).
    3. Sarabia, José María & Prieto, Faustino & Trueba, Carmen, 2012. "Modeling the probabilistic distribution of the impact factor," Journal of Informetrics, Elsevier, vol. 6(1), pages 66-79.
    4. N. Nair & P. Sankaran & S. Sunoj, 2013. "Quantile based stop-loss transform and its applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 167-182, June.
    5. Barry C. Arnold & José María Sarabia, 2018. "Analytic Expressions for Multivariate Lorenz Surfaces," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 84-111, December.
    6. E. Gómez-Déniz, 2016. "A family of arctan Lorenz curves," Empirical Economics, Springer, vol. 51(3), pages 1215-1233, November.
    7. Valero, Jordi & Pérez-Casany, Marta & Duarte-López, Ariel, 2022. "The Zipf-Polylog distribution: Modeling human interactions through social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ZuXiang Wang & Yew-Kwang Ng & Russell Smyth, 2007. "Revisiting The Ordered Family Of Lorenz Curves," Monash Economics Working Papers 19-07, Monash University, Department of Economics.
    2. WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
    3. Miguel Sordo & Jorge Navarro & José Sarabia, 2014. "Distorted Lorenz curves: models and comparisons," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 761-780, April.
    4. Sarabia, José María & Castillo, Enrique & Pascual, Marta & Sarabia, María, 2005. "Mixture Lorenz curves," Economics Letters, Elsevier, vol. 89(1), pages 89-94, October.
    5. Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    6. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    7. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    8. Ogwang, Tomson & Rao, U. L. Gouranga, 2000. "Hybrid models of the Lorenz curve," Economics Letters, Elsevier, vol. 69(1), pages 39-44, October.
    9. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    10. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Economics Working Paper Archive (University of Rennes & University of Caen) 2019-09, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    11. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Working Papers halshs-02320110, HAL.
    12. Genya Kobayashi & Kazuhiko Kakamu, 2019. "Approximate Bayesian computation for Lorenz curves from grouped data," Computational Statistics, Springer, vol. 34(1), pages 253-279, March.
    13. Melanie Krause, 2014. "Parametric Lorenz Curves and the Modality of the Income Density Function," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 905-929, December.
    14. Louis Mesnard, 2022. "About some difficulties with the functional forms of Lorenz curves," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 20(4), pages 939-950, December.
    15. Kwang Soo Cheong, 1999. "A Comparison of Alternative Functional Forms For Parametric Estimation of the Lorenz Curve," Working Papers 199902, University of Hawaii at Manoa, Department of Economics.
    16. Jose-Mari Sarabia, 1997. "A hierarchy of lorenz curves based on the generalized tukey's lambda distribution," Econometric Reviews, Taylor & Francis Journals, vol. 16(3), pages 305-320.
    17. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
    18. Rohde, Nicholas, 2009. "An alternative functional form for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 105(1), pages 61-63, October.
    19. Thitithep Sitthiyot & Kanyarat Holasut, 2023. "A universal model for the Lorenz curve with novel applications for datasets containing zeros and/or exhibiting extreme inequality," Papers 2304.13934, arXiv.org.
    20. Sarabia Alegría, J.M & Pascual Sáez, Marta, 2001. "Rankings de distribuciones de renta basados en curvas de Lorenz ordenadas: un estudio empírico1," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 19, pages 151-169, Diciembre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:4:y:2010:i:4:p:524-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.