IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v596y2022ics0378437122001960.html
   My bibliography  Save this article

A risk measure of the stock market that is based on multifractality

Author

Listed:
  • Wang, Yi
  • Sun, Qi
  • Zhang, Zilu
  • Chen, Liqing

Abstract

By studying the parameters of the multifractal spectrum and their economic significance, a new multifractal measure Rf is constructed, which extracts price fluctuation information from different various levels. To evaluate the performance of the new multifractal measure, using 1-min high-frequency data from the US S&P 500 index and China’s CSI 300 index as the research samples, we empirically compare Rf with the mainstream risk measure model — conditional value at risk (CVaR). We apply the Spearman rank correlation test to the two measures, formulate investment strategies under the two measures according to a uniform investment standard, and simulate investments. The results show that Rf has risk identification capability and that its average prediction accuracy, investment benefit and Sharpe ratio are higher than those of the CVaR model.

Suggested Citation

  • Wang, Yi & Sun, Qi & Zhang, Zilu & Chen, Liqing, 2022. "A risk measure of the stock market that is based on multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  • Handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001960
    DOI: 10.1016/j.physa.2022.127203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122001960
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    2. Yan, Ruzhen & Yue, Ding & Chen, Xudong & Wu, Xu, 2020. "Non-linear characterization and trend identification of liquidity in China's new OTC stock market based on multifractal detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Liu, Ruipeng & Di Matteo, T. & Lux, Thomas, 2007. "True and apparent scaling: The proximity of the Markov-switching multifractal model to long-range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 35-42.
    4. Rafał Weron, 2001. "Levy-Stable Distributions Revisited: Tail Index> 2does Not Exclude The Levy-Stable Regime," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 209-223.
    5. Batten, Jonathan A. & Kinateder, Harald & Wagner, Niklas, 2014. "Multifractality and value-at-risk forecasting of exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 71-81.
    6. Sun, Xia & Chen, Huiping & Wu, Ziqin & Yuan, Yongzhuang, 2001. "Multifractal analysis of Hang Seng index in Hong Kong stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 553-562.
    7. Kim, Kyungsik & Yoon, Seong-Min, 2004. "Multifractal features of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 272-278.
    8. Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    9. Salat, Hadrien & Murcio, Roberto & Arcaute, Elsa, 2017. "Multifractal methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 467-487.
    10. repec:cte:idrepe:24017 is not listed on IDEAS
    11. Maganini, Natália Diniz & Da Silva Filho, Antônio Carlos & Lima, Fabiano Guasti, 2018. "Investigation of multifractality in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 258-271.
    12. Budaev, V.P., 2004. "Turbulence in magnetized plasmas and financial markets: comparative study of multifractal statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 299-307.
    13. Mawuli Segnon & Mark Trede, 2018. "Forecasting market risk of portfolios: copula-Markov switching multifractal approach," The European Journal of Finance, Taylor & Francis Journals, vol. 24(14), pages 1123-1143, September.
    14. Wei, Yu & Wang, Peng, 2008. "Forecasting volatility of SSEC in Chinese stock market using multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1585-1592.
    15. Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Long-range dependence and multifractality in the term structure of LIBOR interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 603-614.
    16. He, Ling-Yun & Chen, Shu-Peng, 2011. "Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 355-361.
    17. R. J. Buonocore & G. Brandi & R. N. Mantegna & T. Di Matteo, 2020. "On the interplay between multiscaling and stock dependence," Quantitative Finance, Taylor & Francis Journals, vol. 20(1), pages 133-145, January.
    18. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    19. Delbianco, Fernando & Tohmé, Fernando & Stosic, Tatijana & Stosic, Borko, 2016. "Multifractal behavior of commodity markets: Fuel versus non-fuel products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 573-580.
    20. Moyano, L.G. & de Souza, J. & Duarte Queirós, S.M., 2006. "Multi-fractal structure of traded volume in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(1), pages 118-121.
    21. Wang, Feng & Ye, Xin & Wu, Congxin, 2019. "Multifractal characteristics analysis of crude oil futures prices fluctuation in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    22. J-F. Muzy & D. Sornette & J. delour & A. Arneodo, 2001. "Multifractal returns and hierarchical portfolio theory," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 131-148.
    23. Giuseppe Brandi & T. Di Matteo, 2020. "On the statistics of scaling exponents and the Multiscaling Value at Risk," Papers 2002.04164, arXiv.org, revised Mar 2021.
    24. Sun, Xia & Chen, Huiping & Yuan, Yongzhuang & Wu, Ziqin, 2001. "Predictability of multifractal analysis of Hang Seng stock index in Hong Kong," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 473-482.
    25. He, Ling-Yun & Chen, Shu-Peng, 2011. "Nonlinear bivariate dependency of price–volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 297-308.
    26. Todea, Alexandru, 2016. "Cross-correlations between volatility, volatility persistence and stock market integration: the case of emergent stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 208-215.
    27. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    28. Tao, Qizhi & Wei, Yu & Liu, Jiapeng & Zhang, Ting, 2018. "Modeling and forecasting multifractal volatility established upon the heterogeneous market hypothesis," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 143-153.
    29. Gu, Danlei & Huang, Jingjing, 2019. "Multifractal detrended fluctuation analysis on high-frequency SZSE in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 225-235.
    30. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    31. Li, Yong & Vilela, André L.M. & Stanley, H. Eugene, 2020. "The institutional characteristics of multifractal spectrum of China’s stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    32. Yao, Can-Zhong & Liu, Cheng & Ju, Wei-Jia, 2020. "Multifractal analysis of the WTI crude oil market, US stock market and EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    33. Chuang, Wen-I & Huang, Teng-Ching & Lin, Bing-Huei, 2013. "Predicting volatility using the Markov-switching multifractal model: Evidence from S&P 100 index and equity options," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 168-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    2. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    3. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    4. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    5. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
    6. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    7. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    8. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    9. Liu, Zhichao & Ma, Feng & Long, Yujia, 2015. "High and low or close to close prices? Evidence from the multifractal volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 50-61.
    10. Yuan, Ying & Zhang, Tonghui, 2020. "Forecasting stock market in high and low volatility periods: a modified multifractal volatility approach," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Gao, Xing-Lu & Shao, Ying-Hui & Yang, Yan-Hong & Zhou, Wei-Xing, 2022. "Do the global grain spot markets exhibit multifractal nature?," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    13. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    14. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    15. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    16. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    17. Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Zhi-Qiang Jiang & Wei-Xing Zhou, 2018. "Multifractal characteristics and return predictability in the Chinese stock markets," Papers 1806.07604, arXiv.org.
    18. Yuan, Ying & Zhuang, Xin-tian & Liu, Zhi-ying, 2012. "Price–volume multifractal analysis and its application in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3484-3495.
    19. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    20. Stavroyiannis, S. & Makris, I. & Nikolaidis, V., 2010. "Non-extensive properties, multifractality, and inefficiency degree of the Athens Stock Exchange General Index," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 19-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.