Author
Listed:
- J-F. Muzy
- D. Sornette
- J. delour
- A. Arneodo
Abstract
We extend and test empirically the multifractal model of asset returns based on a multiplicative cascade of volatilities from large to small time scales. Inspired by an analogy between price dynamics and hydrodynamic turbulence, it models the time scale dependence of the probability distribution of returns in terms of a superposition of Gaussian laws, with a log-normal distribution of the Gaussian variances. This multifractal description of asset fluctuations is generalized into a multivariate framework to account simultaneously for correlations across time scales and between a basket of assets. The reported empirical results show that this extension is pertinent for financial modelling. Two sources of departure from normality are discussed: at large time scales, the distinction between discretely and continuously discounted returns leads to the usual log-normal deviation from normality; at small time scales, the multiplicative cascade process leads to multifractality and strong deviations from normality. By perturbation expansions of the cumulants of the distribution of returns, we are able to quantify precisely the interplay and crossover between these two mechanisms. The second part of the paper applies this theory to portfolio optimization. Our multiscale description allows us to characterize the portfolio return distribution at all time scales simultaneously. The portfolio composition is predicted to change with the investment time horizon (i.e. the time scale) in a way that can be fully determined once an adequate measure of risk is chosen. We discuss the use of the fourth-order cumulant and of utility functions. While the portfolio volatility can be optimized in some cases for all time horizons, the kurtosis and higher normalized cumulants cannot be simultaneously optimized. For a fixed investment horizon, we study in detail the influence of the number of rebalancing of the portfolio. For the large risks quantified by the cumulants of order larger than two, the number of periods has a non-trivial influence, in contrast with Tobin's result valid in the mean-variance framework. This theory provides a fundamental framework for the conflicting optimization involved in the different time horizons and quantifies systematically the trade-offs for an optimal inter-temporal portfolio optimization.
Suggested Citation
J-F. Muzy & D. Sornette & J. delour & A. Arneodo, 2001.
"Multifractal returns and hierarchical portfolio theory,"
Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 131-148.
Handle:
RePEc:taf:quantf:v:1:y:2001:i:1:p:131-148
DOI: 10.1080/713665541
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:1:y:2001:i:1:p:131-148. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.