IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i19p4881-4888.html
   My bibliography  Save this article

Multifractal analysis of Chinese stock volatilities based on the partition function approach

Author

Listed:
  • Jiang, Zhi-Qiang
  • Zhou, Wei-Xing

Abstract

We have performed a detailed multifractal analysis on the 1-min volatility of two indexes and 1139 stocks in the Chinese stock markets based on the partition function approach. The partition function χq(s) scales as a power law with respect to the box size s. The scaling exponents τ(q) form a nonlinear function of q. Statistical tests based on bootstrapping show that the extracted multifractal nature is significant at the 1% significance level. The individual securities can be well modeled by the p-model in turbulence with p=0.40±0.02. Based on the idea of ensemble averaging (including quenched and annealed average), we treat each stock exchange as a whole and confirm the existence of multifractal nature in the Chinese stock markets.

Suggested Citation

  • Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:19:p:4881-4888
    DOI: 10.1016/j.physa.2008.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108003981
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gao-Feng Gu & Wei Chen & Wei-Xing Zhou, 2006. "Quantifying bid-ask spreads in the Chinese stock market using limit-order book data: Intraday pattern, probability distribution, long memory, and multifractal nature," Papers physics/0701017, arXiv.org, revised Mar 2007.
    2. Lee, Jae Woo & Eun Lee, Kyoung & Arne Rikvold, Per, 2006. "Multifractal behavior of the Korean stock-market index KOSPI," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 355-361.
    3. Turiel, Antonio & Pérez-Vicente, Conrad J., 2003. "Multifractal geometry in stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 629-649.
    4. Struzik, Zbigniew R. & Siebes, Arno P.J.M., 2002. "Wavelet transform based multifractal formalism in outlier detection and localisation for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 388-402.
    5. Górski, A.Z & Drożdż, S & Speth, J, 2002. "Financial multifractality and its subtleties: an example of DAX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 496-510.
    6. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    7. A. Arnéodo & J.-F. Muzy & D. Sornette, 1998. "”Direct” causal cascade in the stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 2(2), pages 277-282, March.
    8. Sun, Xia & Chen, Huiping & Wu, Ziqin & Yuan, Yongzhuang, 2001. "Multifractal analysis of Hang Seng index in Hong Kong stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 553-562.
    9. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
    10. Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
    11. Yuan, Ying & Zhuang, Xin-tian, 2008. "Multifractal description of stock price index fluctuation using a quadratic function fitting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 511-518.
    12. Wei, Yu & Huang, Dengshi, 2005. "Multifractal analysis of SSEC in Chinese stock market: A different empirical result from Heng Seng index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 497-508.
    13. Wei, Yu & Wang, Peng, 2008. "Forecasting volatility of SSEC in Chinese stock market using multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1585-1592.
    14. Kwapień, J. & Oświe¸cimka, P. & Drożdż, S., 2005. "Components of multifractality in high-frequency stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 466-474.
    15. Lim, Gyuchang & Kim, SooYong & Lee, Hyoung & Kim, Kyungsik & Lee, Dong-In, 2007. "Multifractal detrended fluctuation analysis of derivative and spot markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 386(1), pages 259-266.
    16. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    17. G.-F. Gu & W. Chen & W.-X. Zhou, 2007. "Quantifying bid-ask spreads in the Chinese stock market using limit-order book data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(1), pages 81-87, May.
    18. Z.-Q. Jiang & L. Guo & W.-X. Zhou, 2007. "Endogenous and exogenous dynamics in the fluctuations of capital fluxes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(3), pages 347-355, June.
    19. Lee, Kyoung Eun & Lee, Jae Woo, 2007. "Probability distribution function and multiscaling properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 65-70.
    20. Jiang, J. & Ma, K. & Cai, X., 2007. "Non-linear characteristics and long-range correlations in Asian stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 399-407.
    21. Oświe¸cimka, P. & Kwapień, J. & Drożdż, S., 2005. "Multifractality in the stock market: price increments versus waiting times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 626-638.
    22. Sun, Xia & Chen, Huiping & Yuan, Yongzhuang & Wu, Ziqin, 2001. "Predictability of multifractal analysis of Hang Seng stock index in Hong Kong," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 473-482.
    23. Mehmet Balcilar, 2003. "Multifractality of the Istanbul and Moscow Stock Market Returns," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 39(2), pages 5-46, March.
    24. Ho, Ding-Shun & Lee, Chung-Kung & Wang, Cheng-Cai & Chuang, Mang, 2004. "Scaling characteristics in the Taiwan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 448-460.
    25. A. Z. Gorski & S. Drozdz & J. Speth, 2002. "Financial multifractality and its subtleties: an example of DAX," Papers cond-mat/0205482, arXiv.org.
    26. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    27. Zhi-Qiang Jiang & Liang Guo & Wei-Xing Zhou, 2007. "Endogenous and exogenous dynamics in the fluctuations of capital fluxes: An empirical analysis of the Chinese stock market," Papers physics/0702035, arXiv.org.
    28. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    29. Du, Guoxiong & Ning, Xuanxi, 2008. "Multifractal properties of Chinese stock market in Shanghai," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 261-269.
    30. Turiel, Antonio & Pérez-Vicente, Conrad J., 2005. "Role of multifractal sources in the analysis of stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 475-496.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    2. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    3. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
    4. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    5. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    6. Chen, Shu-Peng & He, Ling-Yun, 2010. "Multifractal spectrum analysis of nonlinear dynamical mechanisms in China’s agricultural futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1434-1444.
    7. Rodriguez-Romo, Suemi & Sosa-Herrera, Antonio, 2013. "Lacunarity and multifractal analysis of the large DLA mass distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3316-3328.
    8. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    9. He, Ling-Yun & Chen, Shu-Peng, 2010. "Are developed and emerging agricultural futures markets multifractal? A comparative perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3828-3836.
    10. Qian, Xi-Yuan & Gu, Gao-Feng & Zhou, Wei-Xing, 2011. "Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4388-4395.
    11. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    12. Bai, Man-Ying & Zhu, Hai-Bo, 2010. "Power law and multiscaling properties of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1883-1890.
    13. Zhou, Weijie & Dang, Yaoguo & Gu, Rongbao, 2013. "Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1429-1438.
    14. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    15. Schadner, Wolfgang, 2021. "On the persistence of market sentiment: A multifractal fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    16. Cao, Guangxi & Cao, Jie & Xu, Longbing, 2013. "Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 797-807.
    17. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    18. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    19. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    20. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:19:p:4881-4888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.