IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i14p3605-3614.html
   My bibliography  Save this article

Multifractality in stock indexes: Fact or Fiction?

Author

Listed:
  • Jiang, Zhi-Qiang
  • Zhou, Wei-Xing

Abstract

Multifractal analysis and extensive statistical tests are performed upon intraday minutely data within individual trading days for four stock market indexes (including HSI, SZSC, S&P 500, and NASDAQ) to check whether the indexes (instead of the returns) possess multifractality. We find that the mass exponent τ(q) is linear and the singularity α(q) is close to 1 for all trading days and all indexes. Furthermore, we find strong evidence showing that the scaling behaviors of the original data sets cannot be distinguished from those of shuffled time series. Hence, the so-called multifractality in the intraday stock market indexes is merely an illusion.

Suggested Citation

  • Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractality in stock indexes: Fact or Fiction?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3605-3614.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:14:p:3605-3614
    DOI: 10.1016/j.physa.2008.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108001696
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Turiel, Antonio & Pérez-Vicente, Conrad J., 2003. "Multifractal geometry in stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 629-649.
    2. Górski, A.Z & Drożdż, S & Speth, J, 2002. "Financial multifractality and its subtleties: an example of DAX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 496-510.
    3. Baviera, Roberto & Pasquini, Michele & Serva, Maurizio & Vergni, Davide & Vulpiani, Angelo, 2001. "Correlations and multi-affinity in high frequency financial datasets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(3), pages 551-557.
    4. Ingve Simonsen & Mogens H. Jensen & Anders Johansen, 2002. "Optimal Investment Horizons," Papers cond-mat/0202352, arXiv.org.
    5. Karpio, Krzysztof & Załuska–Kotur, Magdalena A. & Orłowski, Arkadiusz, 2007. "Gain–loss asymmetry for emerging stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 599-604.
    6. Sun, Xia & Chen, Huiping & Wu, Ziqin & Yuan, Yongzhuang, 2001. "Multifractal analysis of Hang Seng index in Hong Kong stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 553-562.
    7. Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
    8. Thomas Lux, 2004. "Detecting Multifractal Properties In Asset Returns: The Failure Of The "Scaling Estimator"," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 481-491.
    9. Muniandy, S.V. & Lim, S.C. & Murugan, R., 2001. "Inhomogeneous scaling behaviors in Malaysian foreign currency exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 407-428.
    10. Zhou, Wei-Xing & Yuan, Wei-Kang, 2005. "Inverse statistics in stock markets: Universality and idiosyncracy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 433-444.
    11. Wei, Yu & Huang, Dengshi, 2005. "Multifractal analysis of SSEC in Chinese stock market: A different empirical result from Heng Seng index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 497-508.
    12. N. Vandewalle & M. Ausloos, 1998. "Sparseness and Roughness of Foreign Exchange Rates," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(05), pages 711-719.
    13. Xu, Zhaoxia & Gençay, Ramazan, 2003. "Scaling, self-similarity and multifractality in FX markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 578-590.
    14. J.-P. Bouchaud & M. Potters & M. Meyer, 2000. "Apparent multifractality in financial time series," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 595-599, February.
    15. Sun, Xia & Chen, Huiping & Yuan, Yongzhuang & Wu, Ziqin, 2001. "Predictability of multifractal analysis of Hang Seng stock index in Hong Kong," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 473-482.
    16. Norouzzadeh, P. & Jafari, G.R., 2005. "Application of multifractal measures to Tehran price index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 356(2), pages 609-627.
    17. Mehmet Balcilar, 2003. "Multifractality of the Istanbul and Moscow Stock Market Returns," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 39(2), pages 5-46, March.
    18. A. Z. Gorski & S. Drozdz & J. Speth, 2002. "Financial multifractality and its subtleties: an example of DAX," Papers cond-mat/0205482, arXiv.org.
    19. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    20. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    21. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    22. Turiel, Antonio & Pérez-Vicente, Conrad J., 2005. "Role of multifractal sources in the analysis of stock market time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 475-496.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2007. "Scale invariant distribution and multifractality of volatility multipliers in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 343-350.
    2. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    3. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    4. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    5. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    6. Maganini, Natália Diniz & Da Silva Filho, Antônio Carlos & Lima, Fabiano Guasti, 2018. "Investigation of multifractality in the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 258-271.
    7. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    8. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    9. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    10. Wang, Lei & Liu, Lutao, 2020. "Long-range correlation and predictability of Chinese stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    11. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    12. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    13. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    14. Chen, Hongtao & Wu, Chongfeng, 2011. "Forecasting volatility in Shanghai and Shenzhen markets based on multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2926-2935.
    15. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    16. Ho, Ding-Shun & Lee, Chung-Kung & Wang, Cheng-Cai & Chuang, Mang, 2004. "Scaling characteristics in the Taiwan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 448-460.
    17. Bai, Man-Ying & Zhu, Hai-Bo, 2010. "Power law and multiscaling properties of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1883-1890.
    18. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    20. Schadner, Wolfgang, 2021. "On the persistence of market sentiment: A multifractal fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:14:p:3605-3614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.